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Abstract

We compile an IO toolkit for aggregative games and use inclusive best reply functions
to show strong neutrality properties for long-run equilibria across market structures.
The IIA property of demand functions (CES and logit) implies that consumer surplus
depends on the aggregate alone, and the Bertrand pricing game is aggregative. We
link together the following results: merging parties�pro�ts fall but consumer surplus is
unchanged, monopolistic competition is the market structure with the highest aggre-
gate and consumer surplus, consumer gains from trade are higher under oligopoly than
monopolistic competition. The basic results extend to games with a sub-aggregative
structure.

JEL Classi�cations: D43, L13

Keywords: Aggregative games; Oligopoly theory; Entry; Strategic substitutes and
complements; IIA property; Mergers; Procompetitive e¤ects of trade; Monopo-
listic competition; Logit/CES; Cournot; Nested Logit; Integer constraints



1 Introduction

Many non-cooperative games in economics are aggregative games, where the players�

payo¤depends on their own action and an aggregate of all players�actions. Examples

abound in industrial organization (oligopoly theory, R&D races), public economics

(public goods provision games, tragedy of the commons), and political economy (polit-

ical contests, con�ict models), to name a few.1 In this paper, we consider aggregative

oligopoly games with endogenous entry, and compare alternative long-run market

structures. Our analysis reveals the key drivers for many existing results, establishes

fundamental links, and derives new results.

We compare alternative market structures, such as di¤erent objective functions

(due to a merger or privatization), di¤erent timing of moves (due to leadership), or

technological di¤erences. We develop a simple general framework to analyze how the

aggregate, producer surplus, and consumer surplus di¤er across market structures

in a free entry equilibrium. Our analysis deploys the inclusive best reply concept

introduced by Selten (1970), for which we derive the corresponding maximal pro�t

function as a key tool to characterize the equilibrium.

We show strong neutrality properties across market structures. The aggregate

stays the same in the long run. This is despite the fact that the a¤ected �rms�

equilibrium actions and payo¤s, and the number of active �rms change, while the

una¤ected �rms�equilibrium actions and payo¤s remain unchanged. Thus, free entry

completely undoes short-run e¤ects on the aggregate.2 This neutrality result extends

to consumer surplus whenever consumer surplus depends on the aggregate only. We

1In oligopoly theory, a prominent example is Cournot oligopoly. Other commonly used models
of logit, CES, and linear di¤erentiated demand all �t in the class. Alos-Ferrer and Ania (2005) use
aggregative games to provide an evolutionary foundation for the perfect competition paradigm. See
Cornes and Hartley (2005, 2007a and 2007b) for examples in contests and public good games.

2See Corchón (1994 and 2001) and Acemoglu and Jensen (2013) for comparative statics results
for aggregative games in the short run.
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show that in Bertrand di¤erentiated products models, consumer surplus is solely a

function of the aggregate if and only if demands satisfy the IIA property. Then, the

welfare di¤erence is measured simply as the change in payo¤s to the directly a¤ected

�rm(s). Thus, all market structure di¤erences which are privately bene�cial are also

socially bene�cial, calling for a passive policy approach.

These neutrality results show the strong positive and normative implications of

using an aggregative game structure, such as oligopoly with CES or logit demand,

or Tullock contest game. This is important because these games are widely used

in disparate �elds. Outside of industrial organization, the CES model is central in

theories of international trade (e.g., Helpman and Krugman, 1987; Melitz, 2003), en-

dogenous growth (e.g., Grossman and Helpman, 1993), and new economic geography

(e.g., Fujita et al., 2001; Fujita and Thisse, 2002). The logit model forms the basis

of the structural revolution in empirical industrial organization. The Tullock contest

game has been used in a number of �elds, including the economics of advertising,

innovation, con�ict resolution, lobbying, and electoral competition.

The reason why these models are so popular is uncovered through recognizing

them as aggregative games. The oligopoly problem in broad is complex: each �rm�s

action depends on the actions of all other �rms. An aggregative game reduces the

degree of complexity drastically to a simple problem in two dimensions. Each �rm�s

action depends only on one variable, the aggregate, yielding a clean characterization

of equilibria with asymmetric �rms in oligopoly. This feature of aggregative games has

been used (sometimes implicitly) by many authors to study existence and uniqueness

of equilibria. See, for example, McManus (1962 and 1964), Selten (1970), Novshek

(1984 and 1985), and Corchón (1994 and 2001). Our aim is to show the bene�ts of

exploiting the aggregative structure in games with endogenous entry, an aspect that

has not been explored in the literature so far.3

3Indeed, as is also emphasized by Shubik (1982, p. 325), more research needs to be done to
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Our framework reveals the underpinning to several results in the literature. We

consider mergers, monopolistic competition and international trade in the main text,

and cost shocks, leadership, rent-seeking, research joint ventures and privatization in

the Online Appendix. Exploiting the aggregative game structure directly yields more

general and further results. Importantly, we link together the following results: (i)

Merging parties�pro�ts fall but consumer surplus is unchanged in the long run even

though the merged parties�prices rise and more varieties enter; (ii) market structures

with monopolistically competitive marginal entrants have the highest aggregate and

consumer surplus; (iii) consumer gains from trade are underestimated under monopo-

listic competition as compared to oligopoly; (iv) Stackelberg leadership raises welfare;

and (v) R&D cooperation by some �rms has no impact on the long-run total rate of

innovation even though cooperation encourages more �rms to enter the race.

We show that the toolkit we develop applies more generally to games with a sub-

aggregative structure. An important example is nested logit. The neutrality results

continue to hold in such cases. Two crucial assumptions behind our neutrality results

are that there are no income e¤ects and that the marginal entrant type is the same

across the market structures we compare. Both of these assumptions are commonly

made in the literature. We show that if they are violated, we no longer get the stark

predictions of the main model. With heterogeneous entrants, a bene�cial cost shock

experienced by a �rm causes the aggregate to increase. With income e¤ects, we show

that a change that raises total pro�ts increases the aggregate. Because pro�ts are

redistributed to consumers, their welfare rises if and only if the change increases total

pro�ts.

The rest of the paper proceeds as follows. In Section 2, we present the framework

and provide the basic de�nitions. After de�ning our equilibrium concept in Section 3,

establish the potential of aggregative games as a useful tool of equilibrium analysis. We take a step
in this direction by focusing on games with endogenous entry.
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we present our core comparative static results in Sections 4 and 5. In Sections 6, 7, and

8, we apply our results to mergers, monopolistic competition, and international trade.

We then show how our basic framework can be extended to include sub-aggregative

games in Section 9. We consider income e¤ects and heterogeneous entrants in Sec-

tions 10 and 11, respectively. We consider integer constraints in Section 12 before

concluding in Section 13. The Online Appendix contains further applications of our

basic framework and results.

2 Preliminaries: The IOAggregative Game Toolkit

We consider two-stage games where �rms simultaneously make entry decisions in

the �rst stage. Entry involves a sunk cost Ki for �rm i. In the second stage, after

observing which �rms have entered, active �rms simultaneously choose their actions.

2.1 Payo¤s

Consider the second (post-entry) stage of the game. Let S be the set of active entrants.

We consider aggregative oligopoly games in which each �rm�s payo¤s depend only on

its own action, ai � 0, and the sum of the actions of all �rms, the aggregate, A = �
i2S
ai.

We write the (post-entry or gross) pro�t function as �i (A; ai).

To illustrate, consider (homogeneous product) Cournot games, where �i = p (Q) qi�

Ci (qi). The individual action is own output, qi = ai, and the aggregate is the sum

of all �rms�outputs, Q = A. Consumer surplus depends only on the price, p (Q), so

the aggregate is a su¢ cient statistic for tracking what happens to consumer welfare.

In what follows, we shall refer to the case with log-concave (homogeneous products)

demand, p (Q), and constant marginal cost, Ci (qi) = ciqi, as the Cournot model.

A more subtle example is Bertrand oligopoly with CES demands. The representa-

tive consumer�s direct utility function in quasi-linear form is U = 1
�
ln

�P
i2S

x�i

�
+X0,
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where X0 denotes numeraire consumption and xi is consumption of di¤erentiated

variant i. Hence, �i = (pi � ci)
p���1iP
j
p��j

with � = �
1�� . The denominator - the �price

index�- constitutes the aggregate. It can be written as the sum of individual �rm�s

choices by de�ning aj = p��j so that we can think of �rms as choosing the values

aj, which vary inversely with prices pj, without changing the game. Then we write

�i =
�
a
�1=�
i � ci

�
a
(�+1)=�
i

A
and call the function mapping primal price choices to the

aggregate value the aggregator function.4 Strategic complementarity of prices implies

strategic complementarity of the a�s.

Similarly, for Bertrand oligopoly with logit demands, �i = (pi � ci)
exp[(si�pi)=�]
nP
j=0

exp[(sj�pj)=�]
,

where the sj are �quality� parameters, the pj are prices, and � > 0 represents

the degree of preference heterogeneity. The �outside� option has price 0. Again,

the aggregator function derives from thinking about the �rms as choosing aj =

exp [(sj � pj) =�]. The denominator in the pro�t function is the aggregate, so we

write �i = (si � � ln ai � ci)
ai
A
.5

Let A�i = A� ai be the total choices of all �rms in S other than i. Then we can

write i�s pro�t function in an aggregative oligopoly game as �i (A�i + ai; ai) and we

normalize �i (A�i; 0) to zero. Assume that each �rm�s strategy set is compact and

convex.6 Let ri (A�i) = argmax
ai
�i (A�i + ai; ai) denote the standard best reply (or

4Cornes and Hartley (2012) show that the aggregative structure may be exploited in any game as
long as there exists an additively separable aggregator function which ensures that the interaction
between players�choices is summarized by a single aggregate not only in the payo¤ functions, but
also in the marginal payo¤ functions. See also Jensen (2010). More general classes of aggregative
games have been proposed in Jensen (2010) and Martimort and Stole (2012).

5We show more generally in Sections 5 and 7 that starting with the canonical (additive) direct
and indirect utility forms give rise to aggregative games. In all these examples, even though payo¤s
are a function of the aggregate, consumer welfare does not have to be. Where it is, the aggregative
structure of the game can be exploited to dramatically simplify the consumer welfare analysis. We
show in Section 5 that this is the case in Bertrand di¤erentiated product games where the demand
functions satisfy the IIA property (such as CES and logit).

6We can bound actions by ruling out outcomes with negative payo¤s. In the Cournot model, we
rule out outputs where price must be below marginal cost by setting the maximum value of qi as
the solution to p (qi) = ci.
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reaction) function. We de�ne �A�i as the smallest value of A�i such that ri
�
�A�i
�
= 0.

Assumption A1 (Competitiveness) �i (A�i + ai; ai) strictly decreases in A�i for

ai > 0.

This competitiveness assumption means that �rms are hurt when rivals choose

larger actions. It also means that �i (A; ai) is decreasing in A (for given ai). The

aggregator functions we use for Bertrand games vary inversely with price, so compet-

itiveness applies there too.

A1 implies that �rms impose negative externalities upon each other. Hence, it

rules out games with positive externalities, such as the public goods contribution

game (see, e.g., Cornes and Hartley, 2007a and 2007b). However, in such games, it is

often not relevant to have a free-entry condition closing the model.

Assumption A2 (Payo¤s)

a) �i (A�i + ai; ai) is twice di¤erentiable, and strictly quasi-concave in ai, with a

strictly negative second derivative with respect to ai at any interior maximum.

b) �i (A; ai) is twice di¤erentiable, and strictly quasi-concave in ai, with a

strictly negative second derivative with respect to ai at any interior maximum.

A2a is standard, and takes as given the actions of all other players while A2b takes

as given the aggregate.7 A2a implies a continuous best response function ri (A�i)

which is di¤erentiable and solves

d�i (A�i + ai; ai)

dai
= �i;1 (A�i + ai; ai) + �i;2 (A�i + ai; ai) = 0, i 2 S; (1)

7To see that there is a di¤erence between A2a and A2b, consider Cournot competition with
�i = p(Q)qi � C(qi), and consider the stronger assumption of pro�t concavity in qi. A2a implies
that p00(Q)qi + 2p0(Q) � C 00(qi) � 0, while A2b implies simply that C 00(qi) � 0. Neither condition
implies the other.
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for interior solutions, where �i;j (:), j = 1; 2, refers to the partial derivative with

respect to the jth argument.

Actions are strategic substitutes when d2�i
daidA�i

< 0. Then, ri (A�i) is a strictly

decreasing function for A�i < �A�i, and is equal to zero otherwise. Conversely, actions

are strategic complements when d2�i
daidA�i

> 0. Then, ri (A�i) is strictly increasing

because marginal pro�ts rise with rivals�strategic choices.

The next assumption is readily veri�ed in the Cournot, CES and logit models.8

Assumption A3 (Reaction function slope) d
2�i
da2i

< d2�i
daidA�i

.

We next show A3 implies that there will be no over-reaction: if all other players

collectively increase their actions, the reaction of i should not cause the aggregate to

fall (see also McManus, 1962, p. 16, Selten, 1970, Corchón, 1994, and Vives, 1999, p.

42).

Lemma 1 Under A3, r0i (A�i) > �1 and A�i + ri (A�i) is strictly increasing in A�i.

Proof. From (1), r0i (A�i) =
�d2�i
daidA�i

=d
2�i
da2i
. Because the denominator on the RHS is

negative by the second-order condition (see A2a), A3 implies that r0i (A�i) > �1.

Then A�i + ri (A�i) strictly increases in A�i.

Given the monotonicity established in Lemma 1, we can invert the relation A =

A�i + ri (A�i) to write A�i = fi (A). We can therefore write pertinent relations as

functions of A instead of A�i. The construction of A from A�i is illustrated in Figure

1 for strategic substitutes. A hat over a variable denotes a speci�c value. Figure

1 shows how knowing âi = ri

�
Â�i

�
determines Â, which is the aggregate value

consistent with �rm i choosing âi. A�i = fi (A) is then given by �ipping the axes

(inverting the relation).

8The Cournot model gives �rst derivative p0 (Q) qi+p (Q)�C 0i (qi). A3 implies p00 (Q) qi+2p0 (Q)�
C 00i (qi) < p

00 (Q) qi + p
0 (Q) or p0 (Q) < C 00i (qi), which readily holds for C

00
i (qi) � 0.
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2.2 Inclusive best reply (ibr) function

Selten (1970) �rst introduced the ibr as an alternative way to formulate the solution

to the �rm�s problem. The ibr is the optimal action of �rm i consistent with a given

value of the aggregate, A.9 It is natural to describe the maximization of �i (A; ai)

by writing the action choice as a function of the aggregate. Since Cournot (1838),

however, economists have become accustomed to writing the action as a function

of the sum of all others�actions. Our intuitions are based on that approach, so the

alternative takes some getting used to. Nonetheless, we show that key properties such

as strategic substitutability/complementarity are preserved under a mild assumption

(A3), so the alternative construction is not too dissimilar. Its advantages are seen in

the simple and clean characterizations it a¤ords.

Let ~ri (A) stand for this ibr, i.e., the portion of A optimally produced by �rm i

(hence, A � A�i = ri (A�i) = ~ri (A)).10 A di¤erentiable ri (A�i) gives us a di¤eren-

tiable ~ri (A) function by construction.

Geometrically, ~ri (A) can be constructed as follows. For strategic substitutes, ai =

ri (A�i) decreases with A�i, with slope above �1 (Lemma 1). At any point on the

reaction function, draw down an isoquant (slope �1) to reach the A�i axis, which

it attains before the reaction function reaches the axis. The x�intercept is the A

corresponding to A�i augmented by i�s contribution. This gives ai = ~ri (A). Clearly,

A and ai are negatively related. This construction is shown in Figure 2, where starting

with ri
�
Â�i

�
determines Â and hence ~ri

�
Â
�
.

9Selten (1970, p.154) calls it the Einpassungsfunktion, which Phlips (1995) translates as the
"�tting-in function". An alternative translation is the ibr (see, e.g., Wolfstetter, 1999). Novshek
(1985) refers to it as the "backwards reaction mapping" while Acemoglu and Jensen (2013) call it
the "cumulative best reply" and Cornes and Hartley (2007a and 2007b) call it the "replacement
function." McManus (1962 and 1964) graphs the aggregate as a function of the sum of the actions
of all other players for the Cournot model, from which one can recover the ibr although he does not
directly graph the ibr.
10Hence, in Figure 1, âi = ri

�
Â�i

�
= eri �Â�.
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Lemma 2 If A3 holds, the ibr slope is d~ri
dA
=

r0i
1+r0i

< 1. For strict strategic substitutes

~ri (A) is strictly decreasing for A < �A�i. For strict strategic complements, ~ri (A) is

strictly increasing.

Proof. By de�nition, ~ri (A) = ri (fi (A)). Di¤erentiating yields
d~ri(A)
dA

= dri(A�i)
dA�i

dfi(A)
dA

.

Because A�i = fi (A) from the relation A = A�i + ri (A�i), applying the implicit

function theorem gives us @fi
@A
= 1

1+r0i
and hence d~ri

dA
=

r0i
1+r0i

. For strategic substitutes,

because �1 < r0i < 0 by Lemma 1, ~r
0
i < 0. For strategic complements, 0 < ~r

0
i < 1.

Hence, strategic substitutability or complementarity is preserved in the ibr.11 Note

that ~r0i ! 0 as r0i ! 0 and ~r0i ! �1 as r0i ! �1.

The ibr was constructed by Selten (1970) to establish the existence of an equilib-

rium. An equilibrium exists if and only if
P
i2S
~ri (A) has a �xed point. Because ~ri (A)

is continuous, so too is the sum. Because the individual strategy spaces are compact

intervals, then A must lie in a compact interval (its bounds are simply the sum of

the individual bounds) and
P
i2S
~ri (A) maps to the same compact interval. Therefore,

there is a �xed point by the intermediate value theorem.

To guarantee uniqueness for a �xed number of �rms, it su¢ ces that at any �xed

point X
i2S

~r0i (A) < 1: (2)

We refer to this as the �sum-slope condition�and assume it holds. It automatically

holds for strategic substitutes since Lemma 2 implies that
P
i2S
~ri (A) is decreasing (see

Vives, 1999, p. 43). For strategic complements, the condition may be violated, so

papers on super-modular games (e.g., Milgrom and Shannon, 1994) often consider

11Importantly, although results in the short run critically depend on the slope of the reaction
functions, as we will see, we do not need to distinguish between the cases of strategic complements
and substitutes for our long-run analysis. Moreover, none of our results rides on the assumption
that the ibr is monotone. The only key property for the long-run analysis is that the ibr has slope
less than 1, as shown in Lemma 2. Otherwise, the ibr can be non-monotone.
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extremal equilibria, at which it holds. We only invoke (2) on those rare occasions

when we describe short-run equilibria.

We next present three results which will play a critical role in the development of

our core results in Section 4, and their applications in Sections 6, 7, and 8. Let

��i (A) � �i (A; ~ri (A)) . (3)

It is the value of i�s pro�t when �rm i maximizes its pro�t given the actions of the

others and doing so results in A as the total.

Lemma 3 Under A1-A3, ��i (A) is strictly decreasing for A < �A�i and is zero oth-

erwise.

Proof. For A � �A�i, we have ~ri (A) = 0 by de�nition, and ��i (A) = 0 for A � �A�i.

For A < �A�i, from (3), d��i (A)
dA

= d�i(A;~ri(A))
dA

= �i;1 + �i;2
@~ri(A)
@A

= �i;1

�
1� @~ri(A)

@A

�
,

where the last equality follows from (1). This is negative by A1 and Lemma 2.

Lemma 3 helps us establish uniqueness in the long run given the equilibrium

concept we introduce in Section 3.

The next result establishes the conditions under which the ibr shifts up. For this,

we introduce a shift variable �i explicitly into the pro�t function, �i (A; ai; �i). We

say a di¤erence that raises ~ri (A) renders �rm i more aggressive.

Lemma 4 (Aggression) d~ri(A;�i)
d�i

> 0 if and only if d
2�i(A;ai;�i)
d�idai

> 0.

Proof. Applying the implicit function theorem to the reaction function shows that

@ri=@�i > 0 if and only if
@2�i(A;ai;�i)

@�i@ai
> 0. Now, by de�nition, ~ri (A; �i) = ri (fi (A; �i) ; �i),

where we recall that fi (:) denotes the A�i locally de�ned by the relation A� A�i �

ri (A�i; �i) = 0. Hence, d~ri(A;�i)
d�i

= @ri(A�i;�i)
@A�i

dfi(A)
d�i

+ @ri(A�i;�i)
@�i

. Using the implicit

function theorem again, we get dfi(A)
d�i

= �@ri=@�i
1+@ri=@A�i

. Hence,

d~ri (A; �i)

d�i
=

@ri=@�i
1 + @ri=@A�i

; (4)
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which is positive since the denominator is positive by Lemma 1.

The �nal result will be useful in the analysis of monopolistic competition (Section

7) and leadership (Section D in the Online Appendix). Let bri (A) stand for the value
of ai that maximizes �i (A; ai) for any given A. Hence, �i (A; bri (A)) is the greatest
possible pro�t i can earn for a given A.

Lemma 5 Under A1 and A2b, bri (A) > ~ri (A).
Proof. ~ri (A) is de�ned by �i;1 (A; ~ri (A)) + �i;2 (A; ~ri (A)) = 0. The �rst term is

always negative (implied by A1), so the second term must be positive at ai = ~ri (A).

Then, for a given A, �i (A; ai) is increasing in ai at ai = ~ri (A), and attains its highest

value at ai = bri (A). Hence, by A2b, the value of ai that maximizes �i (A; ai) for
given A is larger than ~ri (A).

3 Free Entry Equilibrium (FEE)

Given the cost of entry Ki for �rm i, a Free Entry Equilibrium (FEE) is de�ned in

the following way.

De�nition 1
�
(~ri (AS))i2S

	
is a FEE with a set S of active �rms and an aggregator

level AS if:

i) ��i (AS) = �i

 P
j2S
~rj (AS) ; ~ri (AS)

!
� Ki for all i 2 S, where

P
j2S
~rj (AS) = AS

de�nes AS;

ii) ��i
�
AfS+ig

�
< Ki for all i =2 S, where

P
j2fS+ig

~rj
�
AfS+ig

�
=
P
j2fSg

~rj
�
AfS+ig

�
+

~ri
�
AfS+ig

�
= AfS+ig de�nes AfS+ig.

The �rst condition means that the �rms which are in the market earn more than

their entry costs, and therefore do not regret their entry decisions. The second condi-

tion means that any �rm that is not in the market has no incentive to enter. Generally,

an equilibrium set of �rms will not be unique.
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It is common to assume in the literature that the marginal �rm earns exactly

zero pro�ts in a free entry equilibrium. To that end, we assume that there is a set

E of �rms that we describe as marginal entrants, each of which has the same pro�t

function, �E (A; ai), and the same entry cost, KE . The set EA = E \ S denotes the

set of active marginal entrants (those which have sunk the entry cost). Using this

notation, we can de�ne the equilibria on which we focus in this paper as follows:

De�nition 2 A Zero Pro�t Symmetric Entrants Equilibrium (ZPSEE) is a FEE with

a set S of active �rms such that EA = E \ S 6= ; and �E

 P
j2S

a�j ; a
�
i

!
= KE for all

i 2 EA.

Although the ZPSEE is used widely, it does not account for integer constraints.

We account for integers in Section 12 and show that the ZPSEE analysis continues

to be informative in this case.

Our goal is to present comparative static analyses of how the ZPSEE di¤ers across

market structures. We interpret market structure broadly to encompass market in-

stitutions (e.g., privatization or nationalization), technological conditions (e.g., cost

shocks), etc. We consider market structure di¤erences that directly impact active

�rms other than the marginal entrants. We refer to the non-marginal �rms as insid-

ers, I. We assume that they are in S in the base market structure and the comparison

one. The structural di¤erence can a¤ect some or all of the insiders. We refer to those

that are a¤ected as changed insiders, IC, and those that are not a¤ected as unchanged

insiders, IU .12

To illustrate, consider the long-run impact of a cost di¤erence (due to a selective

tax or subsidy perhaps). In the base ZPSEE, the set of active �rms might comprise

�ve insiders and eight marginal entrants. The cost di¤erence might mean that two

12It is straightforward (though cumbersome) to allow some of the changed �rms in IC to be inactive
under one equilibrium market structure, in which case they earn zero rents.
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of the insiders have lower marginal costs. These two would be the changed insiders,

while the other three insiders would be unchanged insiders. We would then compare

the ZPSEE in which the two changed insiders have lower costs with the ZPSEE in

which they do not. For instance, compare the number of marginal entrants active in

the market in each ZPSEE, the price and output levels that they and the insiders

choose, the pro�tability of both the changed and the unchanged insiders, and the

welfare implications of the cost di¤erence.

It is important to note that our ZPSEE analysis makes no assumptions regarding

the characteristics of the insiders. What is critical is the symmetry of the marginal

entrants. In the sections that follow, we present our core comparative static results

for ZPSEE, followed by several applications of those results. We then consider FEE

other than ZPSEE by modelling heterogeneous marginal entrants in Section 11.

4 Core propositions

We now present our core results. We wish to compare the positive and normative

equilibrium characteristics of two di¤erent market structures (with the �rms i 2 IC
being altered). Let S 0 and S 00, both of which contain I, stand for the ZPSEE set of

�rms in the two market structures. Let A0 = AS0 and A00 = AS00 be the equilibrium

values of the aggregate at the two di¤erent equilibrium sets of active �rms, and

likewise let a0i and a
00
i be the actions of individual active �rms.

4.1 Aggregate and individual actions

Proposition 1 (Aggregate and individual actions) Suppose that some change to the

�rms i 2 IC shifts the ZPSEE set of �rms from S 0 to S 00, both of which contain

I = IC [ IU and at least one �rm from E. Then, under A1-A3, A0 = A00, a0i = a00i for

all i 2 EA, and a0i = a00i for all una¤ected �rms i 2 IU .

13



Proof. By Lemma 3, ��E (A) is strictly decreasing inA forA < �A�i, and ��E
�
�A�i
�
= 0,

which implies that there is a unique solution, A < �A�i, for the aggregate at any

ZPSEE. In order for there to be at least one active marginal entrant but not all, it

must be true that ��E (AI) > KE > ��E (AI[E), where AI is the aggregate value with

all �rms in I active and AI[E is the value with all �rms in I and E active. Hence,

we must have A0 = A00 = ���1E (KE).

Since A0 = A00 and the ibr ~ri (A) is the same for all i 2 EA, we have ~ri (A00) =

~ri (A
0). Similarly, for each una¤ected �rm i 2 IU (that is, insider �rms whose pro�t

functions remain unchanged), we have ~ri (A00) = ~ri (A
0).

Proposition 1, while simple, is a powerful result that provides a strong bench-

mark. The composition of A0 and A00 may be quite di¤erent due to the di¤erences

between the infra-marginal �rms. There can be more or fewer �rms present in the

market. The result applies irrespective of whether �rms�actions are strategic sub-

stitutes or complements. In contrast, in short-run models (without entry), strategic

substitutability or complementarity determines equilibrium predictions (which can

di¤er dramatically). Finally, the result applies irrespective of how much heterogene-

ity there is among the insiders. The aggregative approach signi�cantly reduces the

complexity of the problem.

Although the aggregate and the equilibrium action of each active �rm from E

stays the same, there may be more or less active marginal entrants in the market as a

result of the change. We say that a di¤erence in market structure renders the changed

insider �rms more (less) aggressive in sum if it raises (decreases)
P

i2IC ~ri (A). Then,

an implication of Proposition 1 is that any change making the a¤ected insiders more

(less) aggressive in sum will decrease (increase) the number of �rms in EA. This is

because if A0 = A00 and the a¤ected insiders become more (less) aggressive in sum,

14



then there must be fewer (more) �rms from E because a0i = a00i for all i =2 IC.13

4.2 Total welfare

We next consider how welfare di¤ers across equilibria.

Proposition 2 (Welfare) Suppose that some change to the �rms i 2 IC shifts the

ZPSEE set of �rms from S 0 to S 00, both of which contain I = IC [IU and at least one

�rm from E. Suppose also that consumer surplus depends solely on A. Then, under

A1-A3:

(i) Consumer surplus remains unchanged.

(ii) Rents of �rms i =2 IC remain unchanged at a ZPSEE, so the change in producer

surplus equals the change in rents to the changed insiders, i 2 IC.

(iii) The change in total surplus is measured solely by the change in the rents of

the changed insiders, i 2 IC.

Proof. (i) By Proposition 1, A0 = A00 = ���1E (K) at any ZPSEE. The result follows.

(ii) This follows directly from Proposition 1. The aggregate remains the same,

the best replies remain the same, and, since the pro�t functions of the una¤ected

�rms are the same, their rents remain the same. Hence, the total change to producer

surplus is measured as the change in the a¤ected �rms�rents.

(iii) This is immediate from (i) and (ii).

As an example, consider an industry where some public �rms are privatized. The

results above imply that in the long run, consumers neither bene�t nor su¤er. Total

welfare changes by the change in the pro�ts of the privatized �rms.14

13Insiders do not all have to be a¤ected in the same way by a change in the market structure.
Some could become more aggressive and others less so, for example. What matters is what happens
to the sum of their ibrs. We thank a referee for pointing this out.
14This generalizes Anderson et al. (1997) who consider the case of a single public �rm.
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In the oligopoly context, consumers are a¤ected by di¤erences in market struc-

tures. Their welfare is an important or even decisive criterion (under a consumer

welfare standard) for evaluating the desirability of di¤erent market structures.15 An

increase in the aggregate is a su¢ cient statistic for consumer welfare to rise whenever

consumer welfare depends just on the aggregate. For example, in case of Cournot

competition with homogeneous goods, the aggregate A is total output, Q, and con-

sumer welfare depends directly on the aggregate via the market price, p (Q). There

are a number of other important cases where consumer surplus depends solely on the

value of the aggregate (and not its composition). These are discussed in Section 5

below.

Although Proposition 2 follows immediately from Proposition 1, it is not at all

obvious a priori that a change in market structure would have no impact on long-

run consumer surplus. The result does not hold if the composition of A matters to

consumers. This may be so when there is an externality, like pollution, which varies

across �rms. Then a shift in output composition towards less polluting �rms raises

consumer welfare.

5 Consumer welfare and Bertrand di¤erentiated
product games

The normative properties of Proposition 2 hold if consumer surplus depends solely

on the aggregate. In this section, we show that this is the case in Bertrand (pricing)

games with di¤erentiated products where demand satis�es the IIA property.

Suppose the pro�t function takes the form �i = (pi � ci)Di (~p) where ~p is the

15Following standard practice, consumer surplus does not include the transfer of pro�ts back to
the consumer. Of course, consumers are better o¤ once they receive pro�t revenue (which they spend
on the numeraire when preferences are quasi-linear). Our discussion follows the standard division
of rents to a consumer side and a producer side. We return to this issue in Section 10, where we
consider income e¤ects, and we speci�cally evaluate the bene�ts to consumers from receiving pro�ts.
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vector of prices set by �rms and Di (~p) is �rm i�s demand function. We are inter-

ested in the conditions under which Di (~p) implies an aggregative game for which the

consumer welfare depends only on the aggregate.

So consider a quasi-linear consumer welfare (indirect utility) function V (~p; Y ) =

� (~p) + Y , where Y is income. Suppose �rst that we can write � (~p) as an increasing

function of the sum of decreasing functions of pi, so � (~p) = ~�
�P

i

gi (pi)

�
where ~�

0
>

0 and g0i (pi) < 0. Then, by Roy�s Identity, Di (~p) = �~�
0
�P

i

gi (pi)

�
g0i (pi) > 0, which

therefore depends only on the summation and the derivative of gi (:). Assume further

that Di (~p) is decreasing in own price
�
dDi(~p)
dpi

= �~�00 (:) [g0i (pi)]
2 � ~�0 (:) g00i (pi) < 0

�
.16

Since gi (pi) is decreasing, its value uniquely determines pi and hence the term g0i (pi)

in the demand expression. Therefore, demand can be written as a function solely of

the summation and gi (pi). This means that the game is aggregative, by choosing

ai = gi (pi) and A =
P
i

ai.17 Hence, consumer welfare (V = � (A) + Y ) depends

only on A (and not its composition). This structure has another important property,

namely that the demand functions satisfy the IIA property: the ratio of any two

demands depends only on their own prices (and is independent of the prices of other

options in the choice set). That is, Di(~p)
Dj(~p)

=
g0i(pi)
g0j(pj)

. In summary:

Proposition 3 Let �i = (pi � ci)Di (~p) and Di (~p) be generated by an additively

separable indirect utility function V (~p; Y ) = ~�
�P

i

gi (pi)

�
+ Y where ~� is increasing

and twice di¤erentiable, strictly convex in pi, and gi (pi) is twice di¤erentiable and

decreasing. Then demands exhibit the IIA property, the Bertrand pricing game is

aggregative, and consumer welfare depends only on the aggregate, A =
P
i

ai, where

ai = gi (pi).

Important examples include the CES and logit demand models. For the CES
16For the logsum formula which generates the logit model, we have gi (pi) = exp [(si � pi) =�] and

so g00i (pi) > 0. However, ~� is concave in its argument, the sum.
17Hence, �i =

�
g�1i (ai)� ci

� �
��0 (A) g0i

�
g�1i (ai)

��
as per the earlier logit example.
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model, we have V = 1
�
lnA + Y � 1, where the action variables are ai = p��i and

Y > 1 is income. For the logit model, we have the �log-sum�formula V = � lnA+Y ,

and the action variables are ai = exp [(si � pi) =�].18

We also prove a converse to Proposition 3. Suppose that demands exhibit the IIA

property, and assume quasi-linearity. Following Theorem 1 in Goldman and Uzawa

(1964, p. 389), V must have the form ~�

�P
i

gi (pi)

�
+Y where ~� (:) is increasing and

gi (pi) is any function of pi. If we further stipulate that demands must be di¤eren-

tiable, then the di¤erentiability assumptions made in Proposition 3 must hold. Then,

assuming that demands are strictly downward sloping implies that ~�
�P

i

gi (pi)

�
must be strictly convex in pi. In summary:

Proposition 4 Let �i = (pi � ci)Di (~p) and Di (~p) be twice continuously di¤eren-

tiable and strictly decreasing in own price. Suppose that the demand functions satisfy

the IIA property. Then the demands Di (~p) can be generated by an additively separa-

ble indirect utility function V (~p; Y ) = ~�

�P
i

gi (pi)

�
+ Y where ~� is twice di¤eren-

tiable, strictly convex in pi, and gi (pi) is twice di¤erentiable and decreasing. Then the

Bertrand game is aggregative, and consumer welfare depends only on the aggregate,

A =
P
i

ai, where ai = gi (pi).

However, the fact that a game is aggregative does not imply that the IIA property

holds. For example, the linear di¤erentiated products demand system of Ottaviano

and Thisse (2004) gives rise to an aggregative game for a �xed number of �rms (i.e.,

in the short-run) with Bertrand competition since demand can be written as a sum of

all prices and own price. However, it does not satisfy the IIA property, so the welfare

implications do not follow for this speci�cation. The composition of A matters for

consumer welfare.
18See Anderson et al. (1992) for a discussion of the two demand systems. They show that both

demand systems can be derived as representative consumer, random utility, and spatial models. The
Lucian demand system developed in Anderson and de Palma (2012) provides another example.
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6 Mergers and cooperation

In this section and the next two, we consider applications and show how our toolkit

can be used in the context of some commonly considered questions in the literature

to gain more insightful and general results.19 We start with considering the short-run

and long-run impact of mergers.

Suppose that two �rms cooperate by maximizing the sum of their payo¤s (the

results easily extend to larger pacts). The merger can be a rationalization of produc-

tion across plants, or a multi-product �rm pricing di¤erent variants. Merger synergies

can result in both marginal cost and �xed cost savings. We assume that there are no

marginal cost savings - these can be incorporated in the analysis by using the e¤ects

of cost changes described in the Online Appendix (Section C). We derive existing

results in the literature concisely from our framework, and we deliver new results on

the long-run impact of mergers in di¤erentiated product markets.

Merged �rms jointly solve max
aj ;ak

�j (A; aj) + �k (A; ak). The �rst order conditions

take the form

�j;1 (A; aj) + �j;2 (A; aj) + �k;1 (A; ak) = 0; (5)

which di¤ers from (1) by the last term, which internalizes the aggregate e¤ect on

sibling payo¤. The two �rst order conditions can be solved simultaneously to �nd aj

and ak as functions of the aggregate, giving ~rmj (A) and ~r
m
k (A) as the individual ibr

functions under merger. Summing these gives the pact�s ibr, ~Rm (A).

Lemma 6 Consider a merger between �rms j and k. Then, for any A, ~rmj (A) �

~rj (A), ~rmk (A) � ~rk (A), and ~Rm (A) < ~rj (A) + ~rk (A).

Proof. First suppose both j and k are active under the merger. By A1, �k (A; ak)

is decreasing in A, so the third term in (5) is negative. Thus, for any ak > 0, the
19More applications (on cost changes, contests, leadership, R&D, privatization, etc.) are available

in the Online Appendix.
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choice of aj must be lower at any given A, so ~rmj (A) < ~rj (A), and likewise for

ak. Second, if only �rm k is active under the merger (e.g., only the lower-cost �rm

operates when Cournot �rms produce homogeneous goods at constant but di¤erent

marginal costs), then 0 = ~rmj (A) < ~rj (A) and ~rmk (A) = ~rk (A). In both cases,

~Rm (A) < ~rj (A) + ~rk (A).

For given A, merged �rms choose lower actions (lower quantity in Cournot, higher

price in Bertrand).20 That the combined entity has lower total production was stressed

by Salant et al. (1983) for Cournot competition with linear demand. Lemma 6 gives

this result for any aggregative game using the new concept of the pact ibr.

Consider �rst mergers in the short run. The equilibrium aggregate, for a given

set S of �rms, solves
P

i2S ~ri (A) = A. A merger only a¤ects the ibr functions of the

�rms involved. Hence, by Lemma 6,
P
i2S
~ri (A) >

P
i6=j;k

~ri (A)+ ~Rm (A). Since the sum

will intersect the 45� line at a lower A, the aggregate falls for strategic substitutes

and other �rms� actions rise (because ~r0i (A) < 0 by Lemma 2). In the Cournot

model, other �rms expand output, so the merged �rm�s total output must contract

by more to render the lower total A. Under the sum-slope condition (2), A also falls

for strategic complements, and others�actions fall (which implies higher prices under

Bertrand competition). The merged �rm�s actions fall for the twin reasons of the

direct lowering of the reaction functions and their positive slope.

The next result follows because ��i (A) is decreasing by Lemma 3.

Proposition 5 Suppose two �rms merge. The aggregate decreases in the short run.

Hence, the non-merged �rms�pro�ts go up, and consumer welfare goes down when it

decreases with A.
20To illustrate, consider a merger in a Cournot market with linear demand. The cost function

of �rm j is Cj (qj) = q2j and of �rm k is Ck (qk) = q2k=2. The merged �rm maximizes (1 � Q)qj �
q2j + (1�Q) qk � q2k=2. Solving the FOCs for qj and qk yields ermj (Q) = 1�Q

5 < erj (Q) = 1�Q
3 andermk (Q) = 2(1�Q)

5 < erk (Q) = 1�Q
2 .
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For strategic substitutes, the �Cournot merger paradox� result of Salant et al.

(1983) shows that mergers are not pro�table unless they include a su¢ ciently large

percentage of the �rms in the market. Other �rms bene�t while merging �rms can

lose. For strategic complements, the other �rms�response reinforces the merged �rms�

actions and mergers are always pro�table (Deneckere and Davidson, 1985). However,

non-merged �rms still bene�t �more�from a merger. This is because each merged �rm

cannot choose the action that maximizes its individual pro�ts while each non-merged

�rm does.

In the long run, entry undoes the short-run impact of the merger:

Proposition 6 Suppose two �rms merge and a ZPSEE prevails. Then:

(i) The aggregate, non-merging �rms�actions and pro�ts, and consumer welfare

(when it depends solely on A) remain the same.

(ii) There are more entrants, and pro�ts to merging �rms are all weakly lower.

Proof. (i) By Propositions 1 and 2.

(ii) By Lemmas 5 and 6, ~rmj (A) � ~rj (A) < brj (A). Since �j (A; aj) is quasi-concave
in aj (A2b), �j (A; ~rj (A)) = ��j (A) � �j

�
A; ~rmj (A)

�
. There are more entrants in

equilibrium because A does not change and merging �rms�actions decrease.

Proposition 6 applies with asymmetric insiders as long as the marginal entrant�s

type does not change. If the �rms are symmetric and making zero pro�ts to start

with, then, with a merger and subsequent entry, the pact �rms make negative pro�ts.

Hence, cost savings are required in order to give �rms a long-run incentive to merge.

In this sense, the Cournot merger paradox is now even stronger: absent synergies,

pact �rms are always worse o¤. Likewise, the pro�tability of mergers under Bertrand

competition no longer holds in the long run.

Proposition 6(i) implies that entry counteracts the short-run negative impact of

mergers on consumer welfare. In the long-run, more �rms enter and consumers bene�t
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from extra variety. In ZPSEE, the merging �rms have higher prices (while all non-

merging �rms are where they started in terms of price and pro�t), but the e¤ect of

higher prices is exactly o¤set by more variety in consumer welfare.

Davidson and Mukherjee (2007) analyze the long-run impact of a merger in the

special case of homogeneous goods Cournot competition with linear demand. Using

the aggregative game structure, we are able to make a much broader statement cover-

ing multi-product �rms and di¤erentiated goods markets with Bertrand competition

under IIA (CES and logit). Our positive results also cover Cournot competition with

linear di¤erentiated products (Ottaviano and Thisse, 2004), but the normative results

do not apply because consumer welfare does not solely depend on the aggregate.

The policy implications of Proposition 6 are very strong. Under free entry, mergers

are socially desirable from a total welfare standpoint if and only if they are pro�table.

Laissez-faire is the right policy, and there is no role for antitrust authorities. This

conclusion holds even under a consumer-welfare standard for mergers (since consumers

remain indi¤erent by Proposition 2), and even if the merger involves synergies (by

Proposition 2). Put another way, our core propositions show that IIA demand systems

build in that result.21 As we discuss later, the result is tempered by income e¤ects,

heterogeneous marginal entrants, and integer issues. Taking the integer constraint

seriously is especially important for markets with small numbers of �rms. We discuss

this issue in Section 12 and show that the ZPSEE analysis continues to be informative

with integers.

21Erkal and Piccinin (2010) analyze the long-run impact of mergers under Cournot competition
with linear di¤erentiated product demand. The game is aggregative both in the short run and the
long run in this case, and the merger has no impact on the aggregate, but since the demand system
does not satisfy IIA, the consumer welfare conclusions are di¤erent.
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7 Monopolistic competition (MC)

MC models have recently resurged (in international trade, new economic geography,

etc.). These models can be cleanly interpreted in the aggregative game setting: �rms

do not internalize the e¤ects of their actions on the aggregate (e.g., in Dixit and

Stiglitz, 1977, the �price index�is taken as given).22 With a continuum of marginal

entrants, which is the approach we exposit below, each �rm indeed has no impact on

the aggregate. Our analysis also applies to a model with a �nite number of �rms (see

Dixit and Stiglitz, 1977) under the assumption that the marginal entrants exhibit

"monopolistically competitive behavior" and ignore their impact on the aggregate.

This section contains two results. The �rst result states that the equilibrium

constitutes a maximum to the aggregate in a market game with monopolistically

competitive marginal entrants subject to a zero-pro�t constraint. Hence, the aggre-

gate serves as the implicit maximand for the market game so that the equilibrium

is the solution to a simple constrained optimization problem.23 The second result

states that consumer welfare is maximal in such a game whenever the aggregate is a

su¢ cient statistic for consumer welfare.

Our analysis in this section explains, through a new lens, why and when MC

delivers the second best optimum allocation under the zero-pro�t condition (see, e.g.,

Spence, 1976; Dixit and Stiglitz, 1977). We extend this result by showing that what

is critical is the behavior of the marginal entrants. Our analysis also reveals a new

class of preferences for which the equilibrium and optimal outcomes coincide in MC

models.

The key to determining the market equilibrium is the behavior ascribed to the

22In this sense, their behavior is like the Stackelberg leader�s action as considered in Section D
of the Online Appendix. Hence, for any given value of the aggregate, actions are larger (lower
prices/higher quantities) than the oligopolistic ones (see Lemma 5).
23See Monderer and Shapley (1996) for the related concept of the potential function to characterize

equilibria. Maximization of such a function delivers the market outcome.
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marginal entrants. The marginal entrant�s zero-pro�t condition is �E (A; brE (A)) = K

for MC, where bri (A) = argmax �i (A; ai) for any given A (as in Lemma 5). Hence,
�i (A; bri (A)) is the greatest possible pro�t �rm i can earn for a given A. Together

with Lemma 3, this implies that the aggregate is the largest one possible: any other

behavior gives a lower value.24

Proposition 7 Consider a market game that is aggregative, where �rms earn pro�ts

�i (A; ai) and there is a pool of symmetric marginal entrants who incur entry costs K.

The maximum possible value of the aggregate that is consistent with the zero pro�t

constraint is attained when the marginal entrants are monopolistically competitive.

As we elaborate below, when the aggregate determines consumer welfare, Propo-

sition 7 means that MC is the optimal market form in that it delivers the second-best

optimal allocation. Importantly, Proposition 7 shows that the crucial assumption for

delivering the highest possible value of the aggregate is that the marginal entrants

are monopolistically competitive. It does not put any restriction on the behavior of

the insider �rms, which can be monopolistically competitive or oligopolistically com-

petitive, for example. Hence, the result also applies to market structures with a few

big �rms and a fringe of small �rms, and, in conjunction with Proposition 8 below,

delivers results similar to the optimality �ndings of Shimomura and Thisse (2012)

and Parenti (2016).

To show the applicability of Proposition 7, we consider additively separable direct

and indirect utility forms for preferences. We already know from Proposition 3 that

the additively separable indirect utility formulation gives rise to an aggregative game,

so Proposition 7 applies to that case. We now show that the aggregative game analysis
24With a continuum of �rms, each �rm has no measurable impact on the aggregate, so bri (A)

corresponds to standard pro�t maximization (as opposed to sales revenue maximization, or some
other objective). With a �nite number of �rms, the result means that MC behavior (as opposed to
some other conduct parameterization such as, say, Nash equilibrium incorporated in ~rE (A)) leads
to the highest possible maximized pro�t.
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that delivers Proposition 7 also encompasses the canonical additively separable direct

utility form used in the literature.25 Hence, the aggregate serves as the implicit

maximand for the market game whenever demand is generated from an additively

separable direct or indirect utility function.

The canonical preference form for tastes with quasi-linear preferences writes the

direct utility of the representative consumer over a continuum of goods as

U = g

�Z N

0

u (xi) di

�
+X0 = g

�Z N

0

u (xi) di

�
+ Y �

Z N

0

pixidi; (6)

where g (:) is an increasing and strictly concave function, and we have substituted

in the budget constraint for the consumption of the numeraire, X0, given aggregate

income Y and variant prices pi. Consumer choice delivers inverse demand

pi = g0
�Z N

0

u (xi) di

�
u0 (xi) . (7)

We denote �rm i�s action variable as ai = u (xi), which can be inverted because

it is an increasing function. Let the inverse relation be ~xi (ai). Then, setting the

aggregate as A =
R
aidi, we can write �rm i�s pro�t as

�i = (pi (xi)� c)xi = (g
0 (A)u0 (~xi (ai))� c) ~xi (ai) ,

which constitutes an aggregate game payo¤ as it depends only on own action and the

aggregate. Therefore, the canonical direct utility preferences give rise to an aggrega-

tive game structure.26

25Another important formulation (which does not have a �sum�form) that delivers an aggregative
game structure is the linear demand/quadratic utility model (see, e.g., Ottaviano and Thisse, 1999).
Deploying a quasi-linear form, we write U = �

R
xidi� �

2

R
x2i di� 


R R
xixjdidj+X0, which begets

inverse demand pi = � � �xi � 

R
xidi. In this case, we can simply choose the variable xi as the

action variable to render an aggregate game formulation, so the quadratic utility above also delivers
an aggregate game structure.
26Examples include power functions u = x� which yield the CES form, and entropy u = �x lnx

which yields the logit demand system (see Anderson, de Palma, and Thisse, 1992).
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We now consider optimality. In common with some other classic cases of models

for which the equilibrium can be described as the maximum of a function, Proposi-

tion 7 also bears strongly on the welfare economics of the equilibrium.27 Indeed, we

know from Proposition 3 that for additively separable indirect utility forms, consumer

surplus depends only on (and increases with) the aggregate A. Proposition 7 imme-

diately implies that consumer welfare is maximal in this case (under the zero-pro�t

constraint and monopolistic competitive behavior of the marginal entrants).

The answer is more delicate for the additively separable direct utility forms. After

substituting for (7) in (6), we have

U = g

�Z N

0

u (xi) di

�
+ Y � g0

�Z N

0

u (xi) di

�Z N

0

xiu
0 (xi) di

= g (A) + Y � g0 (A)

Z N

0

xiu
0 (xi) di:

The last part is not generally a function just of A.28 However, as an important special

case, consider the CES model where u (xi) = x�i . Then we have U = g (A) + Y �

Ag0 (A), which is strictly increasing in A under our stipulation that g be strictly

concave.29

To summarize:

Proposition 8 If consumer surplus is an increasing function of A, then monopolis-

tically competitive behavior gives rise to the maximum possible consumer surplus level

consistent with the zero pro�t condition. Therefore, the equilibrium and constrained

optimum coincide for all additively separable quasilinear indirect utility functions.

27Bergstrom and Varian (1985) show that a Cournot oligopoly implicitly maximizes a weighted
sum of consumer and producer surplus. See also Slade (1994) and Monderer and Shapley (1996) for
the related concept of potential functions for oligopoly games.
28This is also true for the quadratic utility formulation introduced above. As evinced by the

squared term in the utility function, consumer surplus is not just a function of the aggregate,
A =

R
xidi, in this case either.

29See Zhelobodko et al. (2012) for an analysis of monopolistic competition using an additive direct
utility formulation. Our formulation here di¤ers from theirs because we allow for an outside good.
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That the CES taste speci�cation delivers the classic second-best optimality re-

sult is known since Spence (1976) and Dixit and Stiglitz (1977).30 The aggregative

game approach proves this result directly and quickly from a novel and unexpected

perspective. Moreover, it extends it in two important ways. First, Proposition 7

emphasizes that it is su¢ cient for marginal entrants to be monopolistically compet-

itive. Second, Proposition 8 states that the key property for the market equilibrium

to be second-best optimal is that consumer welfare should depend only on the value

of the aggregate. This observation broadens the class of preferences for which the

second-best optimality result holds to include all additively separable indirect utility

functions, including the CES and logit models.31

Finally, it is insightful to apply a MC behavior assumption to the homogeneous-

good Cournot context. Under symmetry, �rms solve maxq � (Q; q) = p (Q) q � C (q)

taking Q as given. The solution is perfect competition with free entry. As we know,

this is the optimal outcome, as Proposition 7 attests. The aggregative game lens

brings out this common structure.

8 Gains from trade

We now apply the analysis of aggregate games with the ZPSEE to trade liberalization.

A standard approach in trade is to use models of monopolistic competition with CES

preferences (see, e.g., Melitz, 2003). Because the CES yields an aggregative game for

Bertrand oligopoly, we can apply our framework to determine how oligopoly outcomes

compare to monopolistically competitive ones.

Our setting is to take an autarchic economy and replicate it k-fold. We investigate

30Hicks (1969) shows that the CES taste speci�cation is the only model that satis�es both direct
and indirect forms of separability.
31In the logit case, it is readily con�rmed that the zero-pro�t constrained optimal price is p =

c + �, and the result follows immediately on recognizing this as the monopolistically competitive
equilibrium price.

27



the impact of such market expansion on mark-ups, product variety, and �rm selection

(i.e., whether more production is done by the more productive �rms). Under monop-

olistic competition with CES preferences, expanding the economy has no e¤ect on

equilibrium mark-ups and �rm selection, and simply increases k-fold the diversity of

products, thus increasing consumer surplus by increasing choice. This raises the ques-

tion of whether monopolistic competition overestimates or underestimates the gain

in consumer surplus if the true situation were properly characterized by oligopoly.

We show that with Bertrand oligopoly, mark-ups decrease and consequently product

variety increases less than k-fold. Moreover, there is selection of more productive

�rms into the market. When we compare to a situation where mark-ups and �rm

selection are constant, and variety rises k-fold, there are two con�icting impacts on

consumer surplus; a detrimental variety e¤ect and a bene�cial mark-up plus selection

e¤ect. A priori, this could cause consumer surplus to rise more or less under oligopoly

than under monopolistic competition.

Note that in a replication environment, monopolistic competition both starts and

�nishes at a higher aggregate value (from Proposition 7), so it gives higher consumer

surplus than a ZPSEE. However, we show that the aggregate, A, rises k-fold with mo-

nopolistic competition and proportionately more with oligopoly. Hence, if consumer

surplus is concave in A, it is unclear a priori whether the increase in surplus is higher

under monopolistic competition or oligopoly. We show that in the central cases of

logit and CES, the gain is higher under oligopoly, and in that sense the gains from

trade are underestimated under monopolistic competition (even though monopolistic

competition yields higher surplus per se). The interpretation is that the bene�ts from

tougher competition and better �rm selection more than outweigh the loss of variety

(relative to monopolistic competition).

Although pro-competitive e¤ects have been central to discussions of the gains

from trade, it has been challenging to capture them in a tractable trade model. This
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is largely because of the shortcomings of the standard approach in trade, the CES

monopolistic competition model, which does not allow for pro-competitive e¤ects.

In response, two alternative paths have been pursued. The �rst approach maintains

the assumption of monopolistic competition but assumes other, non-CES, type of

preferences (see, e.g., Krugman, 1979; Melitz and Ottaviano, 2008; Arkolakis et al.,

2012; Behrens and Murata, 2012). The second approach considers models of oligopoly,

with or without CES preferences (see, e.g., Devereux and Lee, 2001; Bernard et al.,

2003; Atkeson and Burstein, 2008; de Blas and Russ, 2010; Epifani and Gancia, 2011;

Holmes et al., 2014). The results on the pro-competitive e¤ects of trade are mixed and

depend on considerations such as the asymmetries between countries, intersectoral

di¤erences, and free entry.

In what follows, we demonstrate how the toolkit of aggregative oligopoly games

with the ZPSEE can be used to address the pro-competitive e¤ects of trade in a very

tractable way, taking into account the channels of endogenous mark-ups, product

variety, and �rm selection. None of these channels are new in the literature. Our

contribution is to show how the toolkit of aggregative oligopoly games with ZPSEE

can be used (i) to analyze all these channels in a uni�ed framework, and (ii) to

compare the consumer surplus gains under monopolistic competition and oligopoly.

Our analysis has CES preferences as a special case, but it is more general than

that because it encompasses any type of preferences that yield an aggregative game

structure.

As in Melitz (2003), we consider a framework where �rms are di¤erentiated based

on their productivity, represented by �i. Let G (�) stand for the distribution function

of the productivity levels and g (�) stand for the corresponding density function. We

assume that �rms know their productivity levels and make production decisions based

on that knowledge. Production involves a �xed cost, K. As in our main framework,

we use ZPSEE as our equilibrium concept.
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We interpret trade as an increase in market size and suppress trade costs. When

the market size scales up, the mass of �rms (and their types) scales up by the same

proportion. However, the type of the marginal entrant does not change and there are

always some marginal entrants that are active in equilibrium. We let N represent the

mass of potential �rms and x represent the endogenous fraction of marginal entrants

that are active in equilibrium. We assume that all the marginal entrants have the

lowest possible productivity level, �.

We �rst consider how x and A change as the size of the economy changes, before

turning our attention to the consumer surplus gains. An change in x corresponds to

both a selection (of the more e¢ cient �rms) and a variety e¤ect.

Letting Z denote market size, we assume that the pro�t function has the form

�i =
Zh (ai; �i)

A
: (8)

This functional form covers CES and logit demand functions. For example, h (ai; �i) =�
a
�1=�
i � c (�i)

�
a
(�+1)=�
i in the case of CES and h (ai; �i) = (si � � ln ai � c (�i)) ai

in the case of logit, where c (�i) is a decreasing function denoting higher marginal

production costs for lower productivity levels.

The inclusive best response function, eri (A; �i), is the implicit solution ai to the
�rst order condition:

Aha (ai; �i)� h (ai; �i) = 0. (9)

We assume haa (ai; �i) < 0, so the second order condition holds. This implies strategic

complementarity (i.e., the slope of the ibr is positive).

The ZPSEE is described by the following two equations. The �rst one is the

zero-pro�t condition for the marginal entrants:

��i (A; �) =
Zh� (A; �)

A
= K; (10)
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where h� (A; �) = h (eri (A; �) ; �). It is readily shown that ��i (A; �i), the maximized
pro�t function, is decreasing in A (as per Lemma 3), so the equilibrium value of A is

tied down by (10).

The second equation describes the composition of A:

N

�
xG (�) eri (A; �) + Z

�>�

eri (A; �) g (�) d�� = A; (11)

where x represents the (endogenous) fraction of active �rms which have the worst pro-

ductivity draws (�). After substituting for A (de�ned by (10)) and eri (A; �i) (de�ned
by (9)) in (11), we can solve for x.

Consider �rst monopolistic competition. As per Section 7, a�i = argmax
Zh(ai;�i)

A
is

independent of A. Suppose the economy is scaled up k-fold, which means the market

size becomes kZ and the mass of potential �rms becomes kN . Then, consistent with

Melitz (2003, pp. 1705-6), a remains the same, A increases by the same proportion,

and x remains the same.32

The following proposition states how a ZPSEE oligopoly outcome di¤ers from the

monopolistic competition, where we de�ne "aA (�i) as the elasticity of i�s action with

respect to A.

Proposition 9 Suppose the economy scales up k-fold. Under monopolistic competi-

tion, the aggregate scales up k-fold and the equilibrium variety scales up k-fold. In

a ZPSEE, the aggregate increases more than k-fold, while the equilibrium variety in-

creases less than k-fold if "aA (�i) � "aA (�) for all �.

Proof. See the Appendix.

Proposition 9 states that in a ZPSEE, if Z and N scale up k-fold, A increases more

than proportionately, but variety increases less than proportionately. This implies
32For this reason, Melitz (2003) notes that in the absence of trade costs, "trade allows the individ-

ual countries to replicate the outcome of the integrated world economy" (p. 1706). He then considers
trade costs in order to bring out the impact of trade in the context of �rm heterogeneity, speci�cally
to show how trade results in reallocations between �rms and increases the average productivity.
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that the increase in A is mainly driven by the increase in competition (mark-up

e¤ect) rather than variety. In the proof of Proposition 9 we show that x, the number

of active marginal entrants in equilibrium, decreases. This is the reason for the

decrease in variety. The decrease in x also implies that there is selection of better

(more productive) �rms into the market. Importantly, the elasticity condition given

in Proposition 9 holds for the central cases of CES and logit demand systems.

In case of oligopoly, because actions are strategic complements, when A increases,

a increases. For CES and logit demand systems, this implies that as A increases,

prices fall and competition intensi�es. This is the pro-competitive e¤ect of trade that

ensues under oligopoly.

The pro-competitive e¤ect of trade can also be analyzed by tracing what happens

to the mark-ups, given by h(ai;�i)
ai

. In a logit model, this is equivalent to (pi � ci). In

the case of CES, it is the Lerner index.

Under monopolistic competition, since the mark-up is independent of A, it does

not change when the market size increases. In a ZPSEE, the mark-up is h
�(A;�i)
a�i (A;�i)

, and

we want to see how this changes as the market size increases. It is straightforward to

show that mark-ups decrease across the board. One question is whether the decrease

in the mark-ups increases with �i. That is, do the more productive �rms decrease

their mark-ups by more? It is straightforward to verify that in the case of the logit

and CES demand systems, although the mark-up is increasing in �i, the reduction in

the mark-up is also increasing in �i. That is, the more productive �rms have higher

mark-ups to start with and they decrease their mark-ups by more when the economy

is scaled up.33

Finally, we compare consumer surplus gains from trade under monopolistic com-

petition and oligopoly. We are interested in seeing whether monopolistic competition

underestimates the gains from trade because it does not take into account the pro-

33The details are available from the authors on request.
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competitive impact of trade.

Proposition 10 Suppose the economy scales up k-fold. For CES and logit demand

systems, the increase in consumer surplus is higher under oligopoly than under mo-

nopolistic competition.

Proof. We determine whether dCS
dA

dA
dk
is larger under oligopoly or monopolistic com-

petition. From the zero-pro�t condition under monopolistic competition, we have

dA

dk
=
A

k

Under oligopoly we have

dA

dk
=
� (h2a � hhaa)

khahaa
=

�
A

k
� ha
khaa

�
>
A

k

since ha > 0 and haa < 0.

Under logit, CS = � lnA and dCS
dA

= �
A
. Hence, under monopolistic competition

with a logit demand system, the consumer surplus gain from a marginal increase in

k is
dCS

dA

dA

dk
=
�

A

A

k
=
�

k
.

This is clearly lower than the marginal surplus gain under oligopoly since we estab-

lished that dA
dk
is larger under oligopoly. A similar comparison holds for CES because

CS = 1
�
lnA.

We show in Section 7 that the value of the aggregate is the highest under monop-

olistic competition. This implies that consumer surplus will be higher under monop-

olistic competition than under oligopoly both before and after opening to trade, but

Proposition 10 implies that the gains from trade will be higher under oligopoly.
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9 Sub-aggregative Games and the Nested Logit

In this section, we show that our analysis of aggregative oligopoly games extends

to a class of what we term sub-aggregative games. A leading example is the nested

logit model, in which each nest yields a sub-aggregate, and these nest sub-aggregates

can be aggregated to furnish an overall aggregate. We provide a toolkit for both the

short-run and long-run (ZPSEE) analysis, and show that our main results still apply.

Suppose that the pro�t function of �rm i can be written as a function of own

action, an aggregate of �rms�actions in the �rm�s immediate class, J , and an overall

aggregate: �i (A;AJ ; aiJ). We are interested in games where, in the spirit of aggrega-

tive games, neither the composition of others�actions in the sub-aggregator nor the

composition of others�actions outside the immediate class (or "nest" in the nested

logit context) matters to pro�t.

Consider the nested logit structure.34 The choice probability for option i in nest

J is given by

PiJ = PijJPJ , J = 1; :::; N ; i = 1; :::; nJ ,

where nJ is the number of options in nest J = 1; ::; N . Here, both of the choice prob-

abilities on the RHS take a logit structure. Speci�cally, the probability of conditional

choice of i from nest J is

PijJ =
exp (si�pi)

�JP
j2J
exp

(sj�pj)
�J

,

where �J captures intra-nest heterogeneity. Taking again the action variable as aiJ =

exp (si�pi)
�J

, we can write this as

PijJ =
aiJ
AJ
,

where we refer to the value AJ as the sub-aggregator for nest J .

34See Ben-Akiva (1973) for the original development and Anderson et al. (1992) for a more detailed
exposition.
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The choice probability of nest J is

PJ =
exp VJ

�P
I=1;:::;N

exp VI
�

=
aJ
A
;

where � captures taste heterogeneity across nests, VJ is the attractiveness of a nest,

given by the standard log-sum formula applied at the nest level

VJ = �J ln

 P
j2J
exp

(sj � pj)

�J

!
= �J lnAJ ,

aJ = A
�J=�
J denotes the transformation of the sub-aggregates, and A (the sum of

the aJ) is the overall aggregate. Note that �J � � is McFadden�s (1978) consistency

condition for intra-nest substitution patterns to be more elastic than cross-nest ones.35

We can write �rm i�s pro�t in terms of the two levels of aggregate:

�iJ (A;AJ ; aiJ) = (pi � ci)PijJPJ = (si � �J ln aiJ � ci)
aiJ
AJ

aJ
A
:

Our assumptions to deal with the sub-aggregative game set-up are as follows. For A1

(competitiveness), we assume that own pro�t strictly decreases in both A and AJ ,

so that higher aggregator values are harmful in both dimensions. It can be readily

veri�ed that this assumption holds in the nested logit example above. For A2a, we

assume that pro�ts are strictly quasi-concave so that the �rst order conditions deliver

a unique maximum for reaction functions.

We now write the ibr as ~ri (A;AJ), which depends on both constituent aggregates.

In the case of nested logit, ~r is increasing in both arguments so there is strategic

complementarity in both dimensions.36

35If all the �J�s are equal to �, we have the standard logit structure with no nests, i.e., all variants
are equally substitutable.
36The details can be found in Section A of the Online Appendix.
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9.1 Short-run analysis

Suppose �rst that the set of active agents is given, as is their membership into the

various classes. To determine the short-run equilibrium, we proceed as follows. First,

for a given value of the aggregate, A, determine the ibr ~ri
�
A;AJ

�
for each i 2 J .

Summing over all i 2 J and setting equal to AJ delivers the sub-class equilibrium

value of AJ as a �xed point, namely A�J
�
A
�
=
P
i2J
~ri
�
A;A�J

�
. This is shown in Panel

A of Figure 3 (under the assumption that actions are strategic complements). Notice

that the less aggressive are the �rms (in terms of our earlier terminology of weaker

ibrs), the smaller is the subsequent A�J
�
A
�
.

We now proceed analogously for �nding the equilibrium value for A as

A� =
P

J=1;:::;N

a�J (A
�) .

This is shown in Panel B of Figure 3.

We can now perform comparative static analysis with the model. Take the merger

example. When �rms in the same nest merge, the combined reaction function for the

nest falls. This implies that A falls in equilibrium, and so too do the equilibrium

a�J�s and hence A
�
J�s if the sub-aggregates are strategic complements. So all fall. For

nested logit, prices rise everywhere, extending our previous results. One interesting

di¤erence is that if the merging parties are in di¤erent nests, the merged entity only

internalizes the A e¤ect, not the AJ e¤ect. Hence, the impact of a within-nest merger

on actions will be higher than the impact of an across-nest merger. In the case of

nested logit, this means a within-nest merger would result in higher prices than an

across-nest merger.

9.2 Long-run analysis

We now apply the ZPSEE to the sub-aggregative structure. Suppose that each nest

comprises of a set of insider �rms, and a set of symmetric marginal potential en-
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trants, as before. Denote by ��i (A;AJ) = �i (A;AJ ; ~ri (A;AJ)) the maximized pro�t

function, and assume that the various partial derivatives are such that (analogous

to the arguments substantiating L3) ��i (A;AJ) is decreasing in each argument. This

implies that the direct e¤ect coming through the competitiveness assumption is not

overturned by the indirect e¤ect coming through the ibr. We substantiate in Section

A of the Online Appendix that the nested logit does indeed satisfy these properties.

We can then de�ne the ZPSEE from the corresponding level curve (where the

maximized pro�t is equal to the corresponding marginal entrant�s entry cost). Since

inverting aJ = f (AJ) = A
�J=�
J gives AJ = f�1 (aJ) = a

�=�J
J , we can also write the

maximized pro�t function as ��i (A; aJ). Then the slope of the zero-pro�t locus is

given by
daJ
dA

= � @��i (A; aJ) =@A

@��i (A; aJ) =@aJ

and is negative under the partial derivative property mentioned above.

There is such a ZPSEE curve for each sector. Summing them up yields the equi-

librium value of A consistent with a ZPSEE in each sector. It also yields the sub-

aggregator values in each sector, the AJ�s, since AJ = a
�=�J
J . This construction is

given in the top panel of Figure 4. From this, the individual actions in class J are

determined, as per the lower panel of Figure 4. The number of marginal entrants is

determined residually: since each chooses the same action, their number must ensure

total actions sum to the purported equilibrium, AJ .

The following results now follow from the toolkit analysis. First, parallel to Propo-

sition 1, any change to the insider �rms does not change the ZPSEE equilibrium locus,

and so does not change the overall aggregate, the constituent aggregates, and the ac-

tions of una¤ected �rms. The total welfare proposition is likewise unchanged: as

long as consumer surplus depends only on the values of the sub-aggregates (note that

nested logit has the stronger property that it depends only on the aggregate), then
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consumer surplus is unchanged, and the change in total surplus is just the change

in insiders�rents. For a merger, whether it is across or within nests, the neutrality

property of Proposition 6 continues to hold.

This toolkit allows us to analyze the welfare consequences of other changes. Sup-

pose, for example, that KJ , the entry cost, falls for a nest. Then, aJ goes up, the

other aI�s fall, and A rises because the increase in aJ dominates. As long as con-

sumer surplus is increasing in the value of the aggregate and the composition does

not matter (as is the case for nested logit), consumers are better o¤.

10 Income e¤ects

The benchmark results in Section 4 rely on the assumption that consumer preferences

are quasi-linear, i.e., there are no income e¤ects. Although this assumption is com-

monly made in the literature focusing on partial equilibrium analysis, income e¤ects

are important in many contexts. For example, much of the trade literature assumes

unit income elasticity (so, a richer country is just a larger poor country).

Results are more nuanced with income e¤ects, but policy implications are stronger.

With income e¤ects, di¤erences in pro�ts under di¤erent market structures, which we

assume are redistributed to consumers, cause demand e¤ects that a¤ect the outcome.

Ultimately, consumer welfare rises if and only if total pro�ts rise.37

Suppose then that demands increase with income. We explicitly include prof-

its in consumer income, Y , so we evaluate changes in consumer welfare incorpo-

rating extra income from pro�ts (or losses). As in Section 5, we are interested in

the conditions under which consumer surplus is independent of the composition of

the aggregate, which restricts attention to the IIA forms. To this end, we write

V (~p; Y ) = ��

�P
i

gi (pi)

�
� (Y ) where �� (�) and � (�) are both positive, increasing, log-

37Consumer welfare here is total welfare because the pro�ts are passed back to consumers.
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concave, and such that the resulting demand functions, Di (~p) =
���0

�P
i
gi(pi)

�
g0i(pi)�(Y )

��

�P
i
gi(pi)

�
�0(Y )

,

are downward-sloping. As in Proposition 4, it is straightforward to verify that these

demand functions satisfy the IIA property and the resulting game is aggregative.

To see this, suppose the pro�t function takes the form �i = (pi � ci)Di (~p). Then,

treating ai = gi (pi) and A =
P
i

ai as before enables us to write

�i = !i (ai)� (A) (Y ) ,

where � (A) =
��
0
(A)
��(A)

and  (Y ) = �(Y )
�0(Y ) . The log-concavity of

�� (�) and � (�) implies

that the pro�t function is decreasing in A (as consistent with A1) and increasing in

Y .

As an example, consider the CES model with income share � devoted to the

di¤erentiated product sector. The demand for product i is Di =
p���1iP

j=1;:::;n
p��j

�Y , so

aj = p��j .
38 Then, �i = (pi � ci)Di =

!i(ai)�Y
A

, where !i (ai) = ai

�
1� cia

1
�
i

�
, and

V = Y A
�
� .

Proposition 11 Assume an indirect utility function of the form V (~p; Y ) = ��

�P
i

gi (pi)

�
� (Y ),

where �� (�) and � (�) are positive, increasing, log-concave, and such that the resulting

demand functions Di (~p) are downward-sloping. Suppose that Y includes the sum of

�rms�pro�ts. Let S 0 and S 00 stand for the sets of �rms in two ZPSEE, and suppose

that total pro�ts are higher in the second one. Then, Y 0 < Y 00, A0 < A00, and V 0 < V 00.

Proof. Because the total pro�ts are higher, Y 0 < Y 00. The zero-pro�t condition for

marginal entrants at the two ZPSEE are ! (a0) (Y 0)� (A0) = K and ! (a00) (Y 00)� (A00) =

38This is the classic demand generated from a representative consumer utility of the form U = P
j=1;:::;n

x�j

!�
�

x1��0 where x0 is consumption of the numeraire, xj is consumption of variant j, and

� = �
1�� > 0, where the elasticity of substitution, � 2 (0; 1) for (imperfect) substitute products. See,

for example, Dixit and Stiglitz (1977).
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K. Since Y 0 < Y 00 and log-concavity of � (�) implies that  (:) is an increasing func-

tion, it follows that ! (a0)� (A0) > ! (a00)� (A00). Lemma 3 implies that ! (a�)� (A)

is a decreasing function of A, so A00 > A0. Since both �� (�) and � (�) are increasing

functions, V 0 < V 00.

An important implication of Proposition 11 is that circumstances which are ben-

e�cial for �rms (and hence cause Y to increase) are also a fortiori bene�cial for

consumers because the aggregate increases through the income e¤ect. This reinforces

the total welfare result we had in Section 4 without income e¤ects. With income ef-

fects, when Y increases via extra pro�ts (due to, e.g., a cost reduction), total welfare

increases because both the �rms and the consumers are better o¤, through the twin

channels of a higher income reinforced by a higher aggregate.

To illustrate Proposition 11, consider a merger. If there are no synergies, pro�ts of

the merged entity are below those of the other non-merged �rms (Proposition 6). In

the long run, the merger makes a loss, which reduces consumer income. The decreased

consumer income decreases the demand for each variant, ceteris paribus. Proposition

11 shows that the lower pro�ts harm consumers because there is an income loss and

the aggregate is lower, too (as expressed through higher equilibrium prices and/or

less variety). If, however, there are su¢ cient synergies (expressed, e.g., through lower

marginal production costs), then total pro�ts after the merger may be higher. In this

case, welfare must be higher because the consumers are better o¤ whenever the �rms

are better o¤.39

39Shimomura and Thisse (2012) consider a model with CES demand and income e¤ects to analyze
mixed markets. They assume a given (small) number of large incumbents, which behave strategically,
and a symmetric monopolistically competitive fringe. They show that an extra large incumbent raises
pro�ts for the other large �rms, lowers the price index, and raises consumer welfare. Our results in
Section 4 indicate how positive income e¤ects drive their results.
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11 Heterogeneous entrants

We have assumed until now that the �rms in E all have the same pro�t function. The

simplest generalization is when �rms di¤er by entry costs (di¤erences in production

costs and qualities are treated in the Online Appendix).

Suppose that �rms from E have the same pro�t functions up to idiosyncratic K.

Note that Lemmas 1, 2 and 3 still hold since they apply to the post-entry sub-games.

Similar to a supply curve, rank �rms by entry costs. Let K (n) denote the entry cost

of the nth lowest cost entrant. Assume the marginal �rm earns zero pro�t. Then

the equilibrium solution for any set of active �rms, S, is given by the �xed point

condition
P

i2S ~ri (A) = A. By the sum-slope condition (2), the LHS has slope less

than 1.

Suppose now that one insider j becomes more aggressive (in the sense of Lemma

4), and the equilibrium set of �rms moves from S 0 to S 00. Proposition 1 implies that

if all �rms in E have the same entry cost, such a change increases aj while leaving A

and the actions of all other �rms unchanged. These results now change:

Proposition 12 Let entry costs di¤er across �rms in E. Let S 0 and S 00 be the sets of

�rms in two zero pro�t, free entry equilibria, and suppose that insider �rm j is more

aggressive in the second one. Then: (i) A0 < A00; (ii) fewer �rms are active; (iii) each

�rm in EA and IU chooses a lower (higher) action if and only if actions are strategic

substitutes (complements); and (iv) insider �rm j chooses a higher action.

Proof. (i) Suppose instead that A0 � A00. By Lemma 3, ��i (A) is strictly decreasing.

Hence, since A0 � A00, ��E (A
0) � ��E (A

00). The equilibrium condition for a marginal

active �rm to make zero pro�t, �E (A) = K (n), implies that n0 � n00 since the

marginal �rm has a higher gross pro�t and hence a higher entry cost. If actions are

strategic substitutes, this is a contradiction because at A00, there are purportedly more
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entrants, and the action of each is (weakly) greater. Moreover, �rm j produces strictly

more because �rm j�s ibr is higher (Lemma 4). Hence, we cannot have A0 � A00.

The proof for strategic complementarity uses the sum-slope condition (2). For

�rms i 2 S 0,
P

i2S0 ~ri (A
0)�
P

i2S0 ~ri (A
00) < A0�A00. But

P
i2S00 ~ri (A

00) >
P

i2S0 ~ri (A
00)

because there are extra �rms in S 00
and j is more aggressive (with a higher ibr by

Lemma 4). Hence,
P

i2S0 ~ri (A
0)�

P
i2S00 ~ri (A

00) < A0 �A00, but equality must attain

at any pair of equilibria, so there is a contradiction.

(ii) From Lemma 3, ��i (A) is strictly decreasing. Since A
00 > A0, then ��E (A

00) <

��E (A
0). The zero-pro�t condition for the marginal entrant, �E (A) = K (n), implies

that n00 < n0.

(iii) Lemma 2 implies that since A0 < A00, �rms choose a lower (higher) action i¤

actions are strategic substitutes (complements).

(iv) By de�nition, when �rm j is more aggressive, it has a higher ibr (see Lemma

4). Since A0 < A00, j chooses a higher action still if actions are strategic complements.

Under strategic substitutes, suppose instead that j chose a lower action. But then

the aggregate would have to be larger to overturn the impact of the shift in the ibr.

From (ii) and (iii), there would be fewer �rms in EA and each such �rm would choose

a lower action under strategic substitutes. Then, every action level would be smaller,

which is inconsistent with the purported higher aggregate. Hence, �rm j�s action

must be larger in both cases.

In contrast to the neutrality results of Section 4, a more aggressive �rm raises

the aggregate. For the Cournot model, this means a higher total output, and for the

Bertrand model with logit or CES demand, a lower price (implying a higher total

output). When consumer surplus increases in A, consumers must be better o¤.

Although the �rm which experiences the change reacts positively to it by increas-

ing its own action, whether the actions of all other �rms increase or decrease depends

on the sign of the slope of their ibr functions. By Lemma 3, because A rises, the �rms
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which remain active must earn lower rents.

A merger without synergies works in the opposite direction: the aggregate falls,

and despite further variety through entry, consumer surplus is lower. Hence, laissez-

faire is no longer the optimal policy and an active merger policy is desirable because

mergers, absent synergies, now reduce consumer surplus.

12 Integer constraints

So far we have treated the number of �rms as a continuous variable. In this section,

we use the aggregative game toolkit in Section 2 to deal with the integer constraint.

The framework and results developed in Section 2 continue to hold with integers.

In the �rst part of this section, we show that AZPSEE (and the consequent welfare)

constitutes a good approximation to the integer-constrained problem when entrants

are small and/or many. Thus, our key neutrality results for comparing di¤erent

market structures hold approximately for this case. (Note that welfare could rise or

fall following a change in market structure, such as a merger, because subsequent

entry may move the aggregate closer to or further away from AZPSEE.) When there

are few �rms in the industry, there may be signi�cant di¤erences in the aggregate (and

consumer welfare) under di¤erent market structures. Nonetheless, we show with a

merger example that the ZPSEE analysis may deliver a close approximation to the

expected consumer welfare. We do this by accounting for the equilibrium probability

of entry.

We start by determining the range for the equilibrium value of the aggregate under

the integer constraint, namely the bounds on A such that the incumbent �rms break

even and no new �rm wants to enter the market. Let AL and AU stand for the lower

and the upper bounds with a discrete number of �rms and at least one �rm in EA. If

A < AL, there will be entry, and if A > AU , there will be exit. Hence, the equilibrium
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value of the aggregate lies in [AL; AU ] for all market structures.40

The long-run aggregate value AZPSEE is attained when the corresponding number

of �rms is an integer. The integer-constrained value is otherwise lower (it cannot

be higher because then the marginal entrant would make a loss). Therefore, AU =

AZPSEE. AL is de�ned as the value ofA such that if there is one more marginal entrant

entering the market, we would attain AU . Hence, we can �nd AL by subtracting from

AU the last �rm�s action and accounting for the consequent changes in the reactions

of the rivals. To do this, we let � (A) �
P
i2S
eri(A) and modify the sum-slope condition

given in (2) as �0 (A) � � < 1, where � is a constant introduced to investigate how

the gap between the two bounds changes as the sum of ibrs gets steeper. We have

AL + er"(AU) + R AUAL
�0 (x) dx = AU ,

so

AL = AU � er"(AU)� R AUAL
�0 (x) dx � AU � er"(AU)� � (AU � AL) ,

and simplifying gives

AL � AU �
er"(AU)
(1� �)

. (12)

Expression (12) implies that if there are many entrants and/or they are small,

then any equilibrium outcome will be close to AZPSEE. Note that this still holds true

in a market structure with a few large �rms if the long-run equilibrium is driven by

small entrants.41

Hence, in a wide range of markets where marginal entrants are small, we can obtain

a reasonable approximation for the impact of a change in market structure simply by

40Hence, the maximum consumer welfare di¤erence across equilibria S 0 and S 00 is
jCW (AU )� CW (AL)j.
41For strategic substitutes, setting � = 0 gives us AL = AU �erj(AU ) as a lower bound. Therefore,

the equilibrium aggregate value can fall short of AZPSEE by at most the action of a marginal
entrant. For strategic complements, the range of possible aggregate values increases as � increases.
Nevertheless, for a given value of �, the gap between AL and AU will be small if the entrants are
su¢ ciently small.
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ignoring the integer constraint and assuming that the number of �rms is continuous.

Nevertheless, there are other important problems in applied microeconomics in which

there are only a small number of �rms in the market and the marginal entrant is

large. Merger analysis is an example. We now consider how our framework can be

applied to markets and problems of this kind.

We approach the question from the perspective of an outside observer uninformed

about the cost of entry (Werden and Froeb, 1998), and we compare the consumer

surplus before the merger with the expected consumer surplus after the merger. Our

main point (with an example, so its generality is a conjecture) is that expected con-

sumer surplus changes are close to zero, in line with the neutrality results we obtain

under our ZPSEE analysis.

Let �n denote the gross pro�ts when there are n symmetric �rms in the market in

a long-run equilibrium. Then, the entry cost must fall within the interval [�n+1; �n].

We will assume the entry cost to be drawn evenly from this interval. Similar to

Section 6, we consider an exogenous merger between two �rms. There is an entry

cost value in the interval [�n+1; �n] for which one further entrant would just cover

its entry cost after the merger. Call this �mn+1, where the superscript m indicates

that two of the n + 1 �rms are coordinating their prices.42 Then, the probability of

entry is Pe =
�mn+1��n+1
�n��n+1 , and the expected value of the aggregate after the merger

is EA = PeA
m
n+1 + (1� Pe)A

m
n , where A

m
n stands for the value of the aggregate in

a market with n �rms two of which are coordinating their prices. The expected

consumer surplus is de�ned analogously.

As an extension of Proposition 1 to this framework, we ask whether the expected

A after the merger is close to the pre-merger value. We can write the ratio of ex-

pected A to pre-merger A as RA =
Amn (�n��mn+1)+Amn+1(�mn+1��n+1)

An(�n��n+1) . Then, if pro�t were

42It must be the case that �mn+1 > �n+1 since after the merger, the entrant will face less aggressive
rivals.
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(locally) linear in A, we would have RA =
Amn (Amn+1�An)+Amn+1(An+1�Amn+1)

An(An+1�An) . De�ning

x1 = An � Amn > 0, x2 = Amn+1 � An > 0, and x3 = An+1 � Amn+1 > 0 yields

RA =
Amn x2+(A

m
n +x1+x2)x3

(Amn +x1)(x2+x3)
= 1 + x2(x3�x1)

(Amn +x1)(x2+x3)
. This expression tells us that RA = 1 if

x1 = x3 while RA < 1 if x1 > x3. That is, the ratio is one if the impact of the merger

on the aggregate is the same with n or n + 1 �rms. However, if the decrease in the

aggregate is greater with fewer �rms (as might be expected) but not by much, then

the ratio is below unity but close to it. We now investigate whether this condition

holds for an example.

We consider a simple symmetric logit model in which all �rms have the same

quality, s, and marginal cost, c. Hence, �rm i maximizes �i = (pi � c) exp[(s�pi)=�]
nP
j=0

exp[(s�pj)=�]
.

We set the outside option utility to V0 = 0, which ensures that both the aggregate

and consumer surplus are zero with zero �rms, allowing us to meaningfully look at

percentage changes in these values. Since there is no closed-form solution for prices,

we use MATLAB to deliver numerical results. We use the simulations in Anderson

and de Palma (2001) for the market for yoghurt as a guide in our parameter selection

and consider � 2 [0:5; 4], s 2 [3; 8], c 2 [0; 8], and n 2 f4; 5; :::; 10g. The simulations

were run with a grid size of 0:1 for �, s, and c in this space. Figures 5, 6 and 7 contain

some illustrative graphs for the case when � = 1, c = 1, and s = 2. They show how

the ratio of expected A to pre-merger A, the ratio of expected consumer surplus to

pre-merger consumer surplus, and the probability of entry change as n increases from

4 to 10.

For small numbers of �rms, a merger of two �rms can result in a somewhat sub-

stantial reduction in consumer surplus, but if there is subsequent entry of a new �rm,

consumer surplus can rise substantially above the initial level. For example, when

� = 1, c = 1, s = 2 and n = 4, a merger without subsequent entry reduces consumer

surplus by 6:80%. If it induces entry, consumer surplus rises by 9:91% (over the ini-
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tial level). The probability of entry is 30:07%.43 These observations suggest some

substantial departures from our neutrality results in markets with a few �rms. How-

ever, our strong �nding from the simulations is that the expected change in consumer

welfare is remarkably small. In the example just considered, the ECS is 98:22% of

initial consumer surplus. This striking result carries across the parameter range we

consider. The ratio of expected A to pre-merger A ranges between 0:95 and 1:00. The

ratio of expected consumer surplus to pre-merger consumer surplus ranges between

0:98 and 1:00.44

In summary, we conclude that the ZPSEE analysis continues to be informative

with integers. If entrants are many and/or small, AZPSEE constitutes a good approx-

imation to the equilibrium outcome of the integer-constrained problem. In markets

with few �rms, even though the lower and upper bounds on A that we �nd can be sub-

stantially apart, our simulation exercise suggests that neutrality prevails in expected

terms.45

13 Discussion

This paper introduces a free entry condition into aggregative oligopoly games to yield

strong benchmark conditions for long-run equilibria across market structures. We

show how the benchmark neutrality results are modi�ed when we consider income

e¤ects and entrants that are heterogeneous in costs and qualities.46 Allowing income

43This is broadly consistent with Werden and Froeb (1998), who �nd that the probability of entry
in a similar logit model ranges from 0:2 to 0:3.
44For n = 3, the ratio ranges between 0:95 and 1:00.
45This does not mean that antitrust authorities should ignore mergers in small markets, in par-

ticular if they have accurate priors about the possibility of entry.
46With heterogeneous entrants, the benchmark neutrality results change because the type of the

marginal entrant di¤ers between alternative market structures. This would also be the case if the
di¤erence between alternative market structures a¤ected all the �rms in E . Consider, for example,
two market structures with cost di¤erences. In one of them, the marginal entrants are more aggres-
sive. It is possible to show, by extending the analysis in Section C of the Online Appendix, that the
aggregate will be higher under the market structure where the cost di¤erence renders the marginal
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e¤ects extends our strong result that higher pro�t entails higher welfare, but entrant

heterogeneity means a necessary condition for welfare improvement is that producer

surplus should rise.

Our analysis shows the bene�ts of exploiting the aggregative structure in games

with endogenous entry. It is well-acknowledged in the literature that aggregative

games o¤er an attractive way to analyze games involving many heterogeneous players

by reducing the dimensionality of the problem. However, their potential for analyzing

long-run equilibria has not been explored so far.

We make several other contributions. First, we develop the toolkit for analyzing

aggregative oligopoly games, which are ubiquitous in a range of �elds from industrial

organization to international trade to public economics. We relate the inclusive best

reply to the standard best reply function, and show how the former delivers clean re-

sults. Strategic substitutability and complementarity of the best reply are preserved

in the inclusive version. We derive a maximum value result to show that maximized

pro�ts decrease in the aggregate. This is a key device for analyzing long-run equilib-

rium. The simplicity of our analysis provides a basis on which models which assume

monopolistic competition for reasons of tractability (e.g., in international trade) can

deliver results with strategic interaction instead.

Second, we prove that consumer surplus depends only on the aggregate in Bertrand

oligopoly games if and only if the demand function satis�es the IIA property. The

central examples are Logit and CES models. This is important because it allows us

to obtain welfare results in a range of applications where things would otherwise be

intractable. Moreover, our results also show the extent to which some of the existing

welfare results in the literature are �baked in�by the choice of the demand function.

Third, we explain how the toolkit can be extended in a straightforward way to

apply to sub-aggregative games, and show that the benchmark neutrality results

entrant more aggressive.
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continue to hold in this case.

Fourth, we posit the combined inclusive best reply function as a simple tool for

merger analysis. Using it, we show that mergers are socially desirable in the long

run from a total welfare standpoint if and only if they are pro�table. The analysis

generalizes and explains results from the mergers literature that had been derived

only for speci�c demand systems or forms of competition (Cournot or Bertrand).

Fifth, we show that the aggregate is maximized under a zero-pro�t constraint for

monopolistic competition, delivering a direct proof that market equilibrium is then

second-best optimal when welfare only depends on the aggregate. We note that it

su¢ ces for the marginal entrants to be monopolistically competitive. Our analysis

also broadens the class of preferences for which the second-best optimality result

holds to include all additively separable quasilinear indirect utility functions, which

includes the CES and logit models.

Sixth, we compare consumer gains from trade under monopolistic competition and

oligopoly, and show that they are higher under oligopoly.

Seventh, we analyze the impact of integer constraints. We show that in markets

where entrants are many and/or small, the ZPSEE analysis provides a good approx-

imation. In markets with few �rms, our results suggest that neutrality prevails in

expected terms.

The aggregative game approach builds in global competition between �rms. A key

caveat is that it therefore builds in the neutrality results from the outset. Models of

localized competition are quite intractable beyond simple symmetric cases (e.g. the

circle model) or for small numbers of �rms.47 Yet they can suggest quite di¤erent

results, with a wide divergence between optimal and equilibrium actions. Further

work will evaluate these di¤erences.
47Special cases of localized competition which are aggregative games include the Hotelling model

with two �rms and the circular city model with three �rms. Our short run results then apply.
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APPENDIX

A Proof of Proposition 9

When the economy is scaled up k-fold, the equilibrium conditions (10) and (11)

become

kZh� (A; �)

A
= K (13)

kN

�
xG (�) eri (A; �) + Z

�>�

eri (A; �) g (�) d�� = A (14)

We show the impact on A by considering the elasticity of A w.r.t. k. Using the

implicit function theorem on (13), we get the following expression:

k

A

dA

dk
= � k

A

Zh� (A; �) =A

kZ dh�(A;�)=A
dA

= � k
A

1

k

�
A (h2a � hhaa)

hhaa

�
=

�
1� 1

A

ha
haa

�
(15)

which is larger than 1 as desired because haa < 0 from the second order condition.

We next consider how the equilibrium variety is a¤ected when the economy scales

up k-fold.48 This is given by the change in the number of marginal entrants that are ac-

tive in equilibrium, given by x. Letting 
 =
�
xG (�) eri (A; �) + R�>� eri (A; �) g (�) d��

in (14), we have

kN
 = A

ln kN + ln
 = lnA

Then,
d ln


d ln k
=
d lnA

d ln k
� d ln kN

d ln k
.

The �rst term on the RHS is > 1 (see (15)) and the second term is = 1. Hence,

d ln


d ln k
= "Ak (�)� 1 > 0.

48The result also follows from (13) since the zero-pro�t curve is above the rectangular hyperbola.
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A change in k changes 
 through the twin channels of x and eri (A; �i). Suppose
k increases. Since eri (A; �i) also increases, if "ak (�i) > "Ak (�)� 1, x must decrease for

(14) to continue to hold. This is what we aim to show. Note that

"ak (�i) =
k

a

deri (A; �i)
dk

=

�
A

a

deri (A; �i)
dA

��
k

A

dA

dk

�
= "aA (�i) � "Ak (�) ,

so we seek

"aA (�i) "
A
k (�)� "Ak (�) > �1

"Ak (�) (1� "aA (�i)) < 1. (16)

The slope of the ibr is
deri (A; �i)

dA
=

h2a
h2a � hhaa

,

so we have

"aA (�i) =
A

a

h2a
h2a � hhaa

which is equal to
1

a

h

ha

h2a
h2a � hhaa

=
ha

h2a � hhaa

h

a

once we substitute for A = h
ha
from the �rst order condition.

From here, it is straightforward to show that (16) holds if all � are the same.

Equation (16) becomes

�
�
h2a � hhaa
hhaa

��
1� A

a

h2a
h2a � hhaa

�
< 1

which simpli�es to

�(h
2
a � hhaa)

hhaa
+
A

a

h2a
hhaa

< 1

or
h2a
hhaa

�
A

a
� 1
�
< 0

which holds for haa < 0, as assumed.

For heterogeneous �rms, (16) still holds if "aA (�i) � "aA (�) for all �, which is what

the proposition states.
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Figure 1: Derivation of A  from A i−   
 

 

 

 

 

 

 

 

 

 

 

Figure 2: Construction of (A)ir , Strategic Substitutes Case 

 

 

 

 

 

 

 

 

 

 

 

450 

 

  

0  

 

 

 

450 

 

  

 

 
 



Figure 3: Sub-aggregative Games - Short Run 

 
Panel A: The ibr and 𝐴𝐴𝐽𝐽∗ for given 𝐴̅𝐴 

 

 
Panel B: Determination of the equilibrium values of  
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Figure 4: Sub-aggregative Games - Long Run 

 
Panel A: ZPSEE level curves for each nest and the equilibrium 𝐴𝐴∗ 

 

 
Panel B: For given 𝐴𝐴∗, decomposition of equilibrium sub-aggregate, 𝐴𝐴𝐽𝐽(𝐴𝐴∗)  
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Figure 5: Ratio of Expected A and Pre-merger A 

 

Figure 6: Ratio of Expected CS and Pre-merger CS 

 

 



Figure 7: Post-merger Probability of Entry 

 



ONLINE APPENDIX

A Nested Logit

In this section, we show that in case of nested logit, (i) der(A;AJ )
dA

> 0, (ii) der(A;AJ )
dAJ

> 0,

and (iii) dAJ
dA

< 0 along an iso-pro�t line.

Consider a �rm with quality s in nest J . Assuming �J = 1, the �rm maximizes

�(A;AJ ; aiJ) = (s� ln aiJ)
aiJ
AJ

� A
�̂
J

A
;

where �̂ = 1
�
2 (0; 1), c = 0, AJ =

P
aiJ , and A =

P
A�̂J . Let

~s(aiJ) = s� ln aiJ (17)

T =
1

AJ
� A

�̂
J

A
=
A�̂�1J

A
.

Then,

�(A;AJ ; aiJ) = ~s(aiJ)aiJ � T . (18)

The �rst order condition w.r.t. aiJ is given by

�1
dA

daiJ
+ �2

dAJ
daiJ

+ �3 = 0

where �1, �2, and �3 stand for the partial derivative of � w.r.t. its �rst, second, and

third argument, respectively. Since dAJ
daiJ

= 1, we have

�1
dA

daiJ
+ �2 + �3 = 0 (19)

The partial derivatives of � are given by

�1 = ~s(aiJ)aiJ
@T

@A
= �~s(aiJ)aiJ

A�̂�1J

A2
= �~s(aiJ)aiJ

A
T

�2 = ~s(aiJ)aiJ
@T

@AJ
= ~s(aiJ)aiJ

(�̂� 1)A�̂�2J

A
=
~s(aiJ)aiJ(�̂� 1)T

AJ

�3 =
@~s(aiJ)

@aiJ
aiJT + ~s(aiJ)T = �

1

aiJ
aiJT + ~s(aiJ)T = �T + ~s(aiJ)T = T (~s(aiJ)� 1)
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Note that �3 > 0 since �1 and �2 are < 0.

Substituting for �1, �2, �3, and dA
daiJ

= �̂A�̂�1J = �̂TA in (19) gives us

�~s(aiJ)aiJT 2�̂+
~s(aiJ)aiJ(�̂� 1)T

AJ
+ T (~s(aiJ)� 1) = 0 (20)

Dividing through by ~s(aiJ)aiJT gives

�T �̂+ �̂� 1
AJ

+
1

aiJ
� 1

~s(aiJ)aiJ
= 0 (21)

Let f (aiJ) stand for the last two terms of this equation:

f(aiJ) =
1

aiJ

�
1� 1

~s(aiJ)

�
=
~s(aiJ)� 1
aiJ~s(aiJ)

.

Then, f (aiJ) > 0 because �3 > 0. (21) becomes

�T �̂+ �̂� 1
AJ

+ f (aiJ) = 0 (22)

Note that

f 0(aiJ) = �
f(aiJ)

aiJ
� 1

a2iJ~s(aiJ)
2
< 0

Since f(aiJ) =
~s(aiJ )�1
aiJ ~s(aiJ )

, we can also write f 0(aiJ) as

f 0(aiJ) = �
1

a2iJ~s(aiJ)
� f(aiJ)

2.

To show that dAJ
dA

< 0 along an iso-pro�t curve, we use the zero-pro�t condition

of the marginal entrants:

��(A;AJ ; er (A;AJ)) = K

Hence,

dAJ
dA

=
�@��=@A
@��=@AJ

=
�
�
�1 + �3

der(A;AJ )
dA

�
�2 + �3

der(A;AJ )
dAJ

(23)

We totally di¤erentiate the �rst order condition to get der(A;AJ )
dA

and der(A;AJ )
dAJ

. From

(22) we have

f(aiJ) = �̂T � �̂� 1
AJ

=
�̂A�̂�1J

A
� �̂� 1

AJ
(24)
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Totally di¤erentiating gives us

f 0(aiJ)daiJ = �
�̂T

A
dA+ (�̂� 1)

�
�̂T

AJ
+
1

A2J

�
dAJ .

Hence,
der (A;AJ)

dA
=
��̂(T=A)
f 0(aiJ)

> 0

since f 0(aiJ) < 0, and

der (A;AJ)
dAJ

=
(�̂� 1)

�
�̂T
AJ
+ 1

A2J

�
f 0(aiJ)

> 0

since �̂� 1 < 0 and f 0(aiJ) < 0.

Now, consider the numerator of (23). Substituting for �1, �3,
der(A;AJ )

dA
and f 0(aiJ),

and simplifying gives us

�
�
�1 + �3

der (A;AJ)
dA

�
=
T

A

�
�aiJ~s(aiJ) [~s(aiJ) + (~s(aiJ)� 1)2] + �̂T (~s(aiJ)� 1)a2iJ~s(aiJ)2

�~s(aiJ)� (~s(aiJ)� 1)2

�
.

First note that the denominator of the term inside the brackets is negative:

�~s(aiJ)� (~s(aiJ)� 1)2 < 0

Now consider the numerator of the term inside the brackets:

� aiJ~s(aiJ)
�
~s(aiJ) + (~s(aiJ)� 1)2

�
+ �̂T (~s(aiJ)� 1)a2iJ~s(aiJ)2

sign
=
�
�~s(aiJ)� (~s(aiJ)� 1)2 + �̂TaiJ~s(aiJ)(~s(aiJ)� 1)

�
(25)

We can re-write (21) in the following way.

(�̂� 1) ~s(aiJ)aiJ
AJ

+ (~s(aiJ)� 1) = �̂TaiJ~s(aiJ)

Substituting for �̂TaiJ~s(aiJ) in (25) and simplifying yields

�~s(aiJ) +
(~s(aiJ)� 1)(�̂� 1)aiJ~s(aiJ)

AJ
< 0
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Hence, the numerator of (23) is > 0.

Next consider the denominator of (23). Substituting for �2, �3,
der(A;AJ )
dAJ

and

f 0(aiJ), and simplifying yields

�2 + �3
der (A;AJ)

dAJ

sign
= ~s(aiJ)

�
�1 + �̂(~s(aiJ)� 1)aiJ

AJ

�
(26)

For (23) to be negative, (26) must be negative. From (24), after substituting for

f (aiJ), we have
~s(aiJ)� 1
aiJ~s(aiJ)

= �̂
A�̂�1J

A
+
1� �̂

AJ
.

Solving for ~s(aiJ)� 1 yields

~s(aiJ)� 1 =
aiJ

�
�̂
A�̂�1J

A
+ 1��̂

AJ

�
1� aiJ

�
�̂
A�̂�1J

A
+ 1��̂

AJ

� .
Substituting for ~s(aiJ)� 1 in (26) and simplifying yields

aiJ
AJ

�
1 + �̂

aiJ
AJ

� 
A�̂J
A
�̂+ 1� �̂

!
< 1.

Notice that
�
A�̂J
A
�̂+ 1� �̂

�
< 1, so it su¢ ces to show that aiJ

AJ

�
1 + �̂aiJ

AJ

�
< 1.

Let 
i =
aiJ
AJ
denote the share of �rm i in the sub-aggregate. Then, we want to show

that

1� 
i � �̂
2i > 0.

If �̂ = 0, the inequality holds. Consider the worst case, �̂ = 1, in which case we want

to show that 1� 
i � 
2i > 0. This is guaranteed for 
i < 0:618.

Now, note that in a given nest, in equilibrium, 
i is increasing in s. This implies

that if there are two �rms, the weaker one has at most 50% of the nest. In a ZPSEE,

the marginal entrants have lower s. Since there are at least two �rms, the restriction

on 
i must be satis�ed.
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B Logit merger model simulation details

The simulations discussed in Section 12 are based on the following model and equa-

tions.

Suppose that �i = (pi � ci)
exp(si�pi)=�P

j=0;::;n
exp(sj�pj)=� , where the sj represent vertical �qual-

ity�parameters and � > 0 represents the degree of preference heterogeneity across

products. The �outside�option has price 0 and �quality�V0. Assuming symmetry

and setting s = 0 gives

Pi =
exp (�pi=�)P

j=1;::;n

exp (�pj=�) + expV0=�

as the choice probabilities.

Then, the FOC gives

pi = c+
�

1� Pi
= c+

�

1� exp(�p)=�
n exp(�p)=�+expV0=�

.

There is no explicit solution for the symmetric equilibrium price level. Note that

re-writing the FOC as Pi = 1� �
pi�c and substituting in the pro�t expression yields

� = p� c� �.

Hence, if we have the equilibrium price with three and four �rms, we can write the

size of the entry costs supporting three �rms in equilibrium as

F 2 (p4 � c� �; p3 � c� �]

Now suppose Firms 1 and 2 merge. The FOC given above still applies for the

unmerged �rms. The pro�ts of the merged �rms are

�m = 2 (pm � c)Pm

= 2 (pm � c)
exp (�pm=�)

(n� 2) exp (�pu=�) + 2 exp (�pm=�) + expV0=�
.
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The FOC for the merged entity is

pm = c+
�

1� 2Pm ,

which means that the merger�s pro�t is (noting that 2Pm = 1� �
pm�c)

�m = pm � c� �:

The two simultaneous equations we have to solve are

pm = c+
�

1� 2 exp(�pm)=�
(n�2) exp(�pu)=�+2 exp(�pm)=�+expV0=�

and

pu = c+ �
1

1� exp(�pu)=�
(n�2) exp(�pu)=�+2 exp(�pm)=�+expV0=�

.

In the simulations, we compare the pre-merger values of the aggregate and con-

sumer surplus with the expected values after the merger. Consumer surplus equals

� lnA, where A is given by the denominator of the choice probability expressions

(Pi and Pm). As we explain in the text, we set V0 = 0, which allows us to look at

percentage changes in a meaningful way.

C Cost changes and producer surplus (rents)

In the rest of the Online Appendix, we consider further applications of the toolkit we

developed. Consider two equilibria with cost or quality di¤erences. For example, a

selectively-applied exogenous tax or subsidy a¤ects the marginal costs of �rms (see,

e.g., Besley, 1989; Anderson et al. 2001). Or, a government subsidizes production

costs (Brander and Spencer, 1985) or R&D activities (Spencer and Brander, 1983)

of domestic �rms engaged in international rivalry and the number of foreign �rms is

determined by a free-entry condition.
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Even if several �rms are impacted, the total e¤ect is the cumulative e¤ect, so we

can consider changes as if they happened one �rm at a time. Thus, we analyze what

happens if a single insider is a¤ected. We distinguish between the total pro�t and the

marginal pro�t e¤ects on the changed �rm�s rents. Denote the changed �rm i�s type

parameter by �i, and assume that @�i (A; ai; �i) =@�i > 0 so that a higher �i makes

the �rm better o¤ if it does not change its action.

Proposition 1 implies that at a ZPSEE, A is unchanged if �i rises. From Lemma

4, a �rm�s equilibrium action rises at a ZPSEE if a change makes the �rm more

aggressive. Because A is the same, the number of entrants must be lower.

Proposition 13 A higher �i raises �rm i�s rents at a ZPSEE if @
2�i(A;ai;�i)
@�i@ai

� 0.

Proof. Since A is unchanged, we show that d�
�
i (A;�i)

d�i
> 0 with A �xed. Indeed,

d��i (A; �i)

d�i
=
d�i (A; ~ri (A) ; �i)

d�i
= �i;2

@~ri (A; �i)

@�i
+ �i;3. (27)

The last term is positive by assumption; �i;2 > 0 by A1 and (1); @~ri (A; �i) =@�i > 0

by Lemma 4, so the whole expression is positive, as claimed.

The quali�cation @2�i(A�i+ai;ai;�i)
@�i@ai

� 0 in Proposition 13 represents an increasing

marginal pro�tability. If, however, marginal pro�ts decrease with �i, there is a tension

between the direct e¤ect of the improvement to i�s situation and the induced e¤ect

through a lower action.49 There are examples in the literature where the response of

49This tension is illustrated in an example where a cost improvement with a �direct� e¤ect of
raising pro�ts may nonetheless end up decreasing them after the free entry equilibrium reaction.
Consider a Cournot model with linear demand. Costs are C1 (q) = (c+ �) q1 � �� for �rm 1 and
C (q) = cq for all other �rms. Output for each other �rm is determined by 1 �Q � c = q, and the
zero pro�t condition is q =

p
K. Firm 1�s cumulative best reply is 1 �Q � c � � = q1, so a higher

marginal cost reduces its output. Hence, q1 = q � � =
p
K � �. Since �rm 1�s equilibrium pro�t is

��1 = q
2
1+���K, then ��1 =

�p
K � �

�2
+���K at the ZPSEE. Hence, d�

�
1

d� = �2
�p
K � �

�
+� =

�2q1 + �. Notice that the �direct�e¤ect of a marginal change in � is �q1 + �, which is the change
in pro�t if all outputs were held constant (except for �rm 1�s, by the envelope theorem). Clearly,
depending on the size of �, a positive direct e¤ect can nonetheless mean a negative �nal e¤ect, once
we factor in the entry response and the output contraction of the a¤ected �rm.
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rivals can overwhelm the direct e¤ect (although we know of no examples using the

free entry mechanism). Bulow et al. (1985) analyze multi-market contact where a

purported bene�t turns into a liability once reactions are factored in. The Cournot

merger paradox of Salant et al. (1983) shows merging �rms can be worse o¤.

D Leaders and followers

Etro (2006, 2007, and 2008) �rst introduced a Stackelberg leader into the free-entry

model. His main results can be derived succinctly and his welfare conclusions can

be extended using our framework. The game structure is amended to 3 stages. The

leader incurs its sunk cost and chooses al, rationally anticipating the subsequent entry

and follower action levels. Then the other potential entrants (i.e., the other �rms in

I and E) choose whether or not to incur their sunk costs and enter. Finally, those

that have entered choose their actions.

A �rst result on welfare is quite immediate:

Proposition 14 Assume a Stackelberg leader, and that the subsequent equilibrium is

a ZPSEE. Assume also that consumer surplus depends only on A. Then welfare is

higher than at the Nash equilibrium, but consumer surplus is the same.

Proof. The consumer surplus result follows because A is the same, given the outcome

is a ZPSEE. Welfare is higher because the leader�s rents must rise. It can always

choose the Nash action level, and can generally do strictly better.

From Section 5, this welfare result covers all demand systems with the IIA property

(including CES and logit) as well as the Cournot model.

The ibr ~ri (A) is implicitly de�ned by �i;1 (A; ~ri (A)) + �i;2 (A; ~ri (A)) = 0. A1

implies �i;1 (A; ~ri (A)) < 0, so the second term must be positive at the solution.

A Stackelberg leader rationally anticipates that A is unchanged by its own actions
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(Proposition 1), so its optimal choice of action is determined by

�i;2 (A; al) = 0. (28)

Hence, by A2b, the leader�s long-run action must be larger than that in a simultaneous-

move game (see Lemma 5).

Proposition 15 (Replacement E¤ect) Assume a Stackelberg leader, and that the sub-

sequent equilibrium is a ZPSEE. Then its action level is higher, and there are fewer

active marginal entrants although they retain the same action level.

We term this the Replacement E¤ect because, with a �xed A, the leader would

rather do more of it itself, knowing that it crowds out one-for-one the follower �rms

from E . In some cases, the leader wants to fully crowd them out. For example, in the

Cournot model with �i (Q; qi) = p (Q) qi � cqi, we have
@�i(Q;qi)
@qi

= p (Q) � c, so the

leader will always fully crowd out the �rms from E since p (Q) > c at a ZPSEE.

Finally, we compare with the short run, when the number of �rms is �xed. A

leader takes into account the impact of its action on the behavior of the followers. In

contrast to (28), the leader�s action is determined by

�i;1 (A; al)
dA

dal
+ �i;2 (A; al) = 0: (29)

If actions are strategic complements, dA=dai > 1. Since dA=dai = 1 in a simultaneous-

move Nash equilibrium, the leader acts less aggressively than it would in a simultaneous-

move game. If actions are strategic substitutes (i.e., dA=dai < 1), the leader acts more

aggressively than it would in a simultaneous-move game.

The comparison of short-run and long-run equilibria is most striking for strategic

complements. Consider Bertrand di¤erentiated products. The leader sets a higher

price to induce a higher price from the followers (so reducing A, as desired).50 At the

50These results can be quite readily derived within our framework.
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ZPSEE, by contrast, the leader sets a lower price (higher al) and all �rms in EA have

the same price, regardless of the leader�s presence.

The merger and leadership results can be tied together with a simple graph. A2b

(quasi-concavity) implies that �rm i�s marginal pro�t, �i;2 (A; ai), is decreasing. In

Figure 5, �rm i�s pro�t is represented as the area under this derivative because A

is determined at a ZPSEE independently of i�s actions. The leadership point is the

value of al where �i;2 (A; al) = 0. Clearly, it gives the highest pro�t of any solution.

In comparison, the solution where i plays simultaneously with the other �rms after

entry involves �i;1 (A; ai) + �i;2 (A; ai) = 0. Hence, the action level is lower, and the

corresponding pro�t level is lower (see Lemma 5). The smaller pro�t is the triangle

in Figure 5.

Now consider merger. From Lemma 6, each merger partner chooses an even lower

action level, so each now nets an even lower payo¤. The trapezoid in Figure 5 shows

the loss compared to simultaneous Nash equilibrium actions.

E Contests

Aggregative games are common in contests (starting with Tullock, 1967), where play-

ers exert e¤ort to win a prize. We consider applications in R&D and lobbying.

E.1 Cooperation in R&D

Starting with Loury (1979) and Lee and Wilde (1980), the standard approach to

R&D competition assumes that the size of the innovation is exogenously given, but

its timing depends stochastically on the R&D investments chosen by the �rms through

a Poisson process. Time is continuous, and �rms share a common discount rate r.

Firms choose an investment level x at the beginning of the race which provides a

stochastic time of success that is exponentially distributed with hazard rate h (x). A
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higher value of h (x) corresponds to a shorter expected time to discovery. Suppose

that h0 (x) > 0, h00 (x) < 0, h (0) = 0, lim
x!0

h0 (x) is su¢ ciently large to guarantee an

interior equilibrium, and lim
x!1

h0 (x) = 0.

Following Lee and Wilde (1980), assume that each �rm i pays a �xed cost Ki at

t = 0 and a �ow cost xi as long as it stays active. Then �rm i�s payo¤ is

hi (xi)Vi � xi
r +

P
j2S

hj (xj)
�Ki,

where Vi is the private value of the innovation and
P
j2S

hj (xj) is the combined hazard

rate. Equivalently, each �rm chooses ai = hi (xi). Hence, A =
P
j2S

hj (xj) and we

can write the �rm�s payo¤ function as �i (A; ai) =
aiVi�h�1i (ai)

r+A
�Ki. This aggregative

game satis�es assumptions A1-A3.

Using this set-up, Erkal and Piccinin (2010) compare free entry equilibria with

R&D competition to free entry equilibria with R&D cooperation. Under R&D co-

operation, partner �rms choose e¤ort levels to maximize their joint pro�ts, and may

or may not share research outcomes (Kamien et al. 1992). Proposition 1 implies

that the total rate of innovation, A =
P
i

hi (xi), is the same regardless of the type

of cooperation. This is despite the fact that the number of participants in the R&D

race is di¤erent. This surprising neutrality result implies that any welfare gain from

R&D cooperation cannot be driven by its impact on total innovation.

E.2 Lobbying

Following Tullock�s (1967) model of contestants lobbying for a political prize, write

the probability of success for �rm i exerting e¤ort xi as
hi(xi)


+
P
j2S

hj(xj)
, where 
 � 0

represents the probability that the prize is not awarded to any lobbyist (see Skaperdas,

1996, for an axiomatic approach to contest success functions). Typically, the lobbying

model is analyzed with �xed protagonists, but now introduce a free-entry condition

68



for the marginal lobbyists. Results are direct from our core propositions and their

extensions. Namely, comparing two equilibria, the aggregate is the same (as are

marginal lobbyists� actions) and, hence, there is no di¤erence in the total chance

of success. If one scenario involves a �dominant� or leader lobbyist, that lobbyist

will exert more e¤ort in order to crowd out marginal entrants. The overall chance

of success remains the same, so there is an e¢ ciency gain because the same result

is attained with less sunk cost, and the surplus gain is measured by the increase in

surplus to the dominant lobbyist. A similar result attains if a lobbyist is more e¢ cient

(i.e., if its marginal e¤ort is more aggressive in the sense of Lemma 4).51

F R&D subsidies

R&D subsidies are used in many countries throughout the world. This section uses

some of the results derived in Section C to derive new results on the long-run impact

of R&D subsidies.

Consider a subsidy program that a¤ects only a subset of the �rms in an industry

(the �rms in IC). Suppose that, as in Lee andWilde (1980), investment in R&D entails

the payment of a �xed costKi at t = 0 and a �ow cost, and that the subsidy decreases

the recipient�s marginal cost of R&D. The R&D subsidy causes the recipients� ibr

functions to shift up. Since actions are strategic complements in Lee and Wilde

(1980), this causes the rate of innovation in the short run, A, to increase. Proposition

1 implies that the long-run rate of innovation is unchanged with the subsidy. Lemma 4

implies that the individual e¤orts of the �rms in IC increase while Proposition 1 states

that those of the �rms in IU and EA do not change, so the number of participants

in the R&D race decreases. Finally, Propositions 2 and 13 imply that the expected

pro�ts of the subsidized �rms in IC go up, and the expected pro�ts of the �rms in IU
51See, e.g., Konrad (2009), pp. 72-76, for a discussion of rent-seeking contests with voluntary

participation. See Gradstein (1995) on entry deterrence by a leading rent-seeker.
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remain unchanged.

These results imply that although the government can increase the rate of inno-

vation in the short run by adopting a selective R&D subsidy policy, it cannot a¤ect

the rate of innovation in the long run.

G Logit model with di¤erentiated quality-costs

The analysis in Section 11 readily adapts to the case of �rms with di¤erent quality-

costs and the same entry cost, K. Anderson and de Palma (2001) consider this

model, showing that higher quality-cost �rms have higher mark-ups and sell more,

while entry is excessive. We extend their results by determining the comparative

static properties of the equilibrium.

Suppose that �i = (pi � ci)
exp(si�pi)=�P

j=0;::;n
exp(sj�pj)=� , where the sj represent vertical �qual-

ity�parameters and � > 0 represents the degree of preference heterogeneity across

products. The �outside�option has price 0 and �quality�s0. Since we can think of

�rms as choosing the values aj = exp (sj � pj) =�, we can write �i = (si � � ln ai � ci)
ai
A
.

Label �rms by decreasing quality-cost so that s1�c1 � s2�c2 � ::: � sn�cn. Let

S be the set of active �rms, i.e., the �rst n �rms. The marginal �rm, �rm n, makes

zero in a free-entry equilibrium.

Now suppose that an insider �rm j < n is more aggressive (it has a lower marginal

cost, for example). Then the aggregate must rise (the argument follows the lines of the

proof of Proposition 12). Fewer �rms are active at the equilibrium where j is more

aggressive, and each one except j has a higher action, meaning a lower mark-up.

Intuitively, if j is more aggressive, conditions become more competitive and marginal

�rms are forced out. Consumers are better o¤ because the aggregate has risen.
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H Privatization of public �rms

Anderson et al. (1997) use a CES model to compare free entry equilibria with and

without privatization. Since the CES model has the IIA property, Proposition 4

applies: the game is aggregative, and consumer surplus depends only on the aggregate

value.

When some �rms are run as public companies, they maximize their contribution

to social surplus. The public �rms may make a pro�t at a ZPSEE, even though

the private �rms do not. Public �rms price lower, but produce more. Following

privatization, although consumers su¤er from a price rise, this is exactly o¤set by the

increase in product variety as new entrants are attracted by relaxed price competition

(Proposition 2). This means privatization changes total welfare by the decrease in

the rents of the public �rms only. Pro�table public �rms ought not be privatized if

entry is free, and if demands are well characterized by IIA.
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Figure 1A: Comparison of Solutions by Profitability 

(FOR THE ONLINE APPENDIX) 
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