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Abstract

This paper studies the relationship between optimal prizes and scarcity of ideas

in innovation contests. We consider a model of innovation where both ideas and

effort are integral parts of the innovation process. Contest participants are pri-

vately informed about the quality of their ideas. We study how a contest designer’s

choice–the profit maximizing prize–should vary with the difficulty of the innovation

challenge, which is represented by the distribution of idea quality. We introduce a

new stochastic order to rank difficulty of challenges according to scarcity of high-

quality ideas, and find that scarcity of high-quality ideas results in higher optimal

prizes if and only if the benefit from a marginal improvement in the new technol-

ogy’s performance is sufficiently low.
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1 Introduction

The process of innovation starts with a problem. What turns a problem into a world-

changing discovery is an insight or an idea. Hence, an idea represents an investment

opportunity and can be turned into an innovation by exerting effort.

Contests have a long history in the procurement of innovation. In the case of an

innovation contest, the problem to be solved is defined by the contest designer and is

public information. Historically, innovation contests were predominantly used by govern-

ments seeking solutions to major innovation problems faced by their countries.1 More

recently, designing contests to solve innovation problems has been growing in popularity

in the private sector also. Even major industry players, such as BMW (Füller et al.,

2006), Cisco, IBM (Bjelland and Wood, 2008), Philips, and Qualcomm, utilize contests

to enhance their innovative capacity.2

In this paper, we study the design of optimal prizes in innovation contests. There

exists a large variation in the prizes awarded in innovation contests. For example, the

average prize awarded by XPRIZE, an organization running public innovation contests,

was $4.5 million in 1996-2014 and $8.4 million in 2014-2018. As another example, Netflix

awarded $1 million in 2009 to the computer algorithm that best improves its recommen-

dation system. In 2013, the company awarded a much lower prize of $10,000 to those who

most improve its cloud computing services. One explanation for this variation may be

that some problems are more difficult than others, and therefore higher prizes are awarded

to solve them. However, is it always optimal to incentivize more difficult challenges with

higher prizes?

Our starting point is a model of innovation where the key ingredients are ideas and

effort. To solve a problem, a solver (i.e., potential innovator) must first have an idea and

then the incentive to invest in that idea. We assume that ideas can be ranked in terms of

their quality. Different solvers privately receive ideas with different qualities for the same

problem.3 They then decide whether to invest and how much to invest in solving the

problem. The best solution wins the contest and receives the prize provided it is above a

performance requirement.

1For example, the British Parliament offered a prize of £20,000 in 1714 for a method of determining
longitude at sea. In 1795, the French military offered a cash prize of 12,000 francs for a new method to
preserve food (which resulted in the development of canning).

2Innovation contests are also sometimes used by venture capitalists in the allocation of funds. See for
example QPrize, which is Qualcomm Ventures’ seed investment competition.

3Kornish and Ulrich (2014) show empirically that the quality of ideas matters in determining success.
They consider ‘raw ideas,’ which are the opportunities conceived at the outset of an innovation process,
and investigate the importance of having a good idea (as opposed to resources) in determining success.
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Different problems in our model are represented by different idea distributions. Some

problems are easy and then many innovators are likely to have high-quality ideas to start

with. In this case, competition is more likely to take place along the effort dimension. As

the problem gets more difficult, the probability of having a high-quality idea decreases.

In this case, solvers are more likely to compete along the idea dimension, i.e., having a

good idea will give a solver a strong advantage.

Scarcity is a fundamental concept in economics and is considered to be one of the

main determinants of an object’s value. Does this mean that the winner in a contest

where high-quality ideas are scarcer should receive a higher prize? In other words, to

what extent should we expect the prize to reflect the scarcity of high-quality ideas?4 We

show that the answer to this seemingly intuitive question is not straightforward.

To explore how the optimal prize changes as the scarcity of high-quality ideas changes,

we introduce a new order of stochastic dominance to capture the notion of scarcity. An

innovator has a scarcer idea if the probability that someone else has a better idea than

him is smaller. Since this probability will depend on the size of the solver base, the

scarcity order also depends on the solver population size.

Our results uncover that the relationship between scarcity of high-quality ideas and

the optimal prize critically depends on the market value of the innovation, specifically on

the marginal value of solution performance for the seeker (i.e., contest designer). Consider

two examples. The Wolfskehl Prize awards DM 100,000 to the first person to rediscover

the proof of Fermat’s Last Theorem. As long as a proof is correct, it serves the purpose of

validating the theorem. Hence, the benefits of a proof depends only on whether it meets

a minimal requirement. Compare this with the Netflix Prize, which awarded $1 million

in 2009 to the best algorithm to predict user ratings for films. In this case, the minimum

requirement was for the new algorithm to outperform the existing one. Otherwise, there

was no benefit to Netflix. Beyond meeting this minimum requirement, the more an

algorithm improved the existing one, the more valuable it was. The winning algorithm

4The prize in an innovation contest is similar to a patent. Through the patentability requirements,
society selects which innovations should receive a patent (i.e., prize). For example, in US patent law, an
innovation should satisfy the nonobviousness requirement. According to this requirement, an invention
is considered nonobvious if someone with ordinary skill or training in the relevant field could not easily
make the invention based on prior art. In European patent law, the same idea is captured by the
inventive step requirement, which states that an invention should be sufficiently inventive in order to
be patented. In both cases, an invention is considered to be patentable if it meets a legally defined
“scarcity” requirement.
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bested Netflix’s own algorithm for predicting ratings by 10.06%.5

We show that if the market value is not very sensitive to the quality of the solution

(i.e., as long as the solution meets the minimal quality, additional quality does not have

much impact on the market value of the innovation), then the goal of the seeker is to

maximize the probability of having an idea that meets the minimal quality requirement.

In this case, as the scarcity of high-quality ideas increases, the seeker compensates by

increasing the prize level. Hence, the optimal prize is increasing in the scarcity of high-

quality ideas. However, if the marginal value of solution performance for the seeker is

sufficiently high, then the goal of the seeker is to obtain as good a solution as possible. In

this case, the optimal prize is decreasing in the scarcity of high-quality ideas. Intuitively,

when the seeker cares highly about the solution performance, the expected return from

a pool of solvers decreases as the scarcity of high-quality ideas increases. The seeker is

willing to invest more in a contest where the likelihood of a high-performance solution is

higher.

We consider two extensions of our model. The results generalize in a straightforward

way to the case where the seeker has a nonlinear benefit function. We also consider a

variation of the model where the seeker sets the minimum performance requirement in

addition to the prize.

In general, our results imply that contest designers, while adjusting prize levels with

the difficulty of challenges, should pay attention to the how much they will benefit from

a marginal increase in performance. Although our paper is couched in the language

of innovation contests, our analysis applies to a wider range of scenarios. Our results

have implications for any contest environment with private types where the participants

have to exert effort and the contest designer cares about the best performance only. In

other contexts, the reason for the private information may be past experience, access to

different resources, genetic make-up, etc.

The remainder of the paper is organized as follows. Section 2 discusses the related

literature. Section 3 introduces a model of contests and Section 4 characterizes the

equilibrium strategies and the optimal prize. Section 5 presents our main result on how

the optimal prize changes with the scarcity of ideas. The proof of the main result is

presented in Section 6. Section 7 explores extensions of our benchmark model to the

cases of nonlinear benefit functions and endogenous minimum requirements. Finally,

5The winning team BellKor’s Pragmatic Chaos improved the predictions by 10.06% on the test data
set, which Netflix used to determine the final winner. The contest structure for the Netflix Prize was
different from the one we consider in this paper. It was dynamic, where the first submission triggered a
deadline for further submissions. Nevertheless, the payoff function of the seeker is the same as to ours.
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Section 8 concludes. All proofs, except for the proof of our main result (Proposition 2),

are relegated to the appendix.

2 Related Literature

Our paper contributes to a large literature on contests with incomplete information. See,

e.g., Moldovanu and Sela (2001), Chawla et al. (2015), Liu et al. (2018) and Olszewski and

Siegel (2018). There also exists a growing literature specifically on innovation contests.

See, e.g., Taylor (1995), Fullerton and McAfee (1999), Fullerton et al. (2002), Che and

Gale (2003), Terwiesch and Xu (2008) and Korpeoglu and Cho (2018).6

Our paper has a different focus from all these papers because we are interested in

the question of how the optimal prize changes as the distribution of ideas changes. An

important feature of our paper is that each participant privately has access to a solution

idea that they can invest in. This allows us to focus on the importance of ideas and idea

quality (i.e., creativity) in the innovation process.

The ideas in our model represent different solution approaches which can be ranked

in terms of quality. The possibility of different approaches is also considered in Ganuza

and Hauk (2006), Erat and Krishnan (2012) and Letina and Schmutzler (2019). In

these papers, participants choose between a variety of approaches before exerting effort.

However, as different from our model, all potential approaches are available to all solvers

at the same time. In contrast, each solver has access to one and only one (different)

solution approach in our model.

Another strand of literature that is related to our paper are the studies on mono-

tone comparative statics. These studies investigate how the solutions to a maximization

problem change as the parameters of the problem change. Topkis (1978) and Milgrom

and Shannon (1994) consider the question in non-stochastic environments while Athey

(2002) consider it in stochastic environments. Quah (2007) studies how the solution to a

maximization problem changes as the constraint set changes. In this paper, we ask how

the contest designer’s optimal choice changes as the idea distribution changes. As the

idea distribution changes, both the objective function (the seeker’s expected profit), and

the participants’ incentive and participation constraints change.

Our stochastic order is a modified version of the monotone likelihood ratio property

used in Athey (2002). It is different from the stochastic orders used in the literature

6Some papers in the literature consider hybrid systems. For example, Fu et al. (2012) analyze how a
fixed budget should be allocated between subsidies and prizes in order to motivate innovation. Galasso
et al. (2018) study environments where patent rights and cash rewards are complements.
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to investigate how the distribution of types affect properties of equilibrium outcomes.

For example, Maskin and Riley (2000) show that dominance in terms of reverse hazard

rate implies more aggressive bidding in first price auctions. Pesendorfer (2000) shows

similar results in procurement auctions using hazard rate dominance. Hoppe et al. (2009)

study the role of costly signaling in matching markets with privately informed agents.

They use a variation of second order stochastic dominance to consider how increased

heterogeneity affects the matching outcome.7 Note that these papers in the literature

study how equilibrium behavior changes with the distribution of private information,

while we study how the mechanism designer’s choice changes with the distribution of

private information.

3 Model

We study a contest type which is commonly observed in innovation environments. Con-

sider a seeker (e.g., a pharmaceutical company) who is searching for a solution (e.g., a

vaccine for a new disease) and sponsors an innovation contest with a monetary prize of

value v ∈ [0, v̄], where v̄ is a finite upper bound for the prize. The upper bound ensures

that the optimal prize is finite. To avoid the uninteresting case in which the optimal prize

is always v̄, we also assume the bound is not too small: v̄ > 1.8 The assumption that

the prize is a fixed amount and does not vary with solution performance is a commonly

observed feature of innovation (as well as some other type of) contests in the real world.

A set of solvers (e.g., researchers), {1, 2, ..., n}, may participate in the contest, where

n ≥ 2. Each solver i has a private idea of quality qi ≥ 0, which is independently and

identically distributed according to a cumulative distribution function (c.d.f.) F with

support [0, wF ].9 The idea quality may not be bounded, in which case wF = +∞.

Different solvers may have ideas with different qualities due to differences in creativity,

experience, etc. At any q ∈ (0, wF ), F is twice continuously differentiable and its density

function, F ′ ≡ f , is positive. It is possible that F (0) > 0, which means that there is a

mass point at idea quality 0. This captures the innovation challenges in which there is a

positive probability that a solver does not have an idea to start with. There is no mass

point in the distribution at any q > 0.

7The stochastic dominance they use is introduced by Barlow and Proschan (1966). For distributions
with the same mean, it implies second order stochastic dominance. In contrast, the stochastic orders
considered in Maskin and Riley (2000) and Pesendorfer (2000) imply first order stochastic dominance.

8This assumption is not important for our results, and the consequence of relaxing it is discussed in
Example 1.

9Our analysis can be generalized to [mF , wF ] with wF > mF ≥ 0.
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We assume that the idea distribution F satisfies the following regularity condition:

Assumption 1 q + F (q)/f(q) is non-decreasing.

Assumption 1 is satisfied if F is log-concave, which implies that this assumption is

less restrictive than log-concavity.10 Moreover, Assumption 1 is similar to the regularity

condition of Myerson (1981) which requires q − (1 − F (q))/f(q) to be non-decreasing.

The difference is that Myerson’s definition uses the hazard rate function f(q)/(1−F (q)),

while our assumption uses the reverse hazard rate function f(q)/F (q).

After learning the prize and his idea quality, a solver develops his idea into a solution.

If solver i has an idea of quality qi = 0, his performance level is 0 independent of how

much effort he exerts. If the solver’s idea quality is qi > 0, he can submit a solution of

performance level xi ≥ 0 at a cost of xi/qi. Hence, achieving a given performance level

costs less if the solver has an idea of higher quality. We use the cost function xi/qi for

cleaner exposition, but our approach applies to a more general multiplicatively separable

cost function C(xi, qi) = xiL(qi) also, where L is positive, continuously differentiable,

and strictly decreasing.11 Solver i’s payoff is v − xi/qi if he wins the prize and −xi/qi
otherwise. All solvers are risk-neutral.

It is reasonable to assume in innovation contests that for a solution to yield value to

the seeker, its performance level must be sufficiently high. Consider, for example, the

contest to develop a new drug. The new drug must have sufficiently low side effects before

it can be utilized by the seeker. Hence, not all winning solutions will be of use to the

seeker. To this end, we assume that there is a publicly-known and verifiable exogenous

threshold t > 0 and solutions with performance levels below t has no benefit to the seeker.

For example, the threshold may represent the minimal quality that a vaccine must satisfy

for it to be approved by the regulatory authorities. We assume that v̄ − t/wF > 0 to

ensure that the threshold is not so high that all solvers choose zero performance.

Let x(1) = max{x1, ..., xn} stand for the solution with the highest performance. If

x(1) < t, then none of the solvers wins the prize. Otherwise, the solver with the highest

performance wins the prize. In case of a tie, the prize is allocated with equal probability

among the tying solvers. We relax the assumption of an exogenously given threshold level

in Section 7.2.

The above set-up is built on the contest model of Moldovanu and Sela (2001). The

key difference is that in their model, the contest designer maximizes the total expected

10See Bagnoli and Bergstrom (2005) for a survey of applications of log-concave distributions. They
also provide a comprehensive list of parametric distributions that are log-concave.

11Redefining the idea quality as q̃i = 1/L(qi) yields the same set-up.
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performance. In contrast, the seeker’s profit in our set-up is a function of the maximum

performance.12 Specifically, it consists of two parts. The seeker potentially cares about

obtaining a solution that is above the threshold level, and the difference between the

threshold and the maximum performance:

Π(x(1), v) =

 1 + λ(x(1) − t)− v if x(1) ≥ t

0 otherwise
(1)

If the maximum performance is below the threshold, the solution generates zero profit.

Any solution with a performance above the threshold t yields a fixed benefit which is

normalized to 1. In addition, λ ≥ 0 stands for the marginal benefit that the seeker

receives from an increase in solution performance. If λ = 0, the seeker does not profit

from extra performance beyond the threshold. The higher λ is, the more she benefits from

an increase in performance. We study the case in which the marginal benefit is constant

and relax this assumption in Section 7.1. The discontinuity in the seeker’s profit function

allows us to consider the case where the seeker only cares about having a solution that

is above the minimum threshold. However, as we discuss in Remark 3, our analysis also

applies to the case of a continuous profit function.

The seeker is assumed to be risk-neutral and chooses the prize level v to maximize

her expected profit.

4 Optimal Prize

We start by deriving the Bayesian Nash equilibria in a contest with a prize of v. Since

the solvers are ex ante symmetric, we focus on the symmetric equilibrium. If v ≤ t/wF ,

all solvers optimally choose zero performance. In the next lemma, we characterize the

equilibrium assuming v > t/wF .

Lemma 1 In a symmetric equilibrium, a solver with idea quality q submits a solution

with performance

β(q) =

 t+ vAt(q) if q ≥ qt

0 otherwise

12This feature also differentiates our set-up from the all-pay auction model where the designer max-
imizes the expected revenue, or equivalently, the bidders’ total expected payments. Our set-up is also
different from other auction models. For example, in a first price auction, the seller’s revenue depends
on the highest bid, but only the winner pays.
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where At(q) =
∫ q
qt
sdF n−1(s) and qt solves

qtF
n−1(qt) = t/v. (2)

According to the equilibrium strategy, if a solver’s idea quality is too low, he chooses

zero performance. If his idea quality is qt, he is indifferent between submitting a solution

of performance t and 0. If his idea quality is higher than qt, the solver submits a solution

with a performance level above t, and the performance increases with his idea quality.

The discontinuity of β(q) is a result of the threshold assumption, without which the

equilibrium strategy is continuous (as shown in Moldovanu and Sela, 2001).

Given the solvers’ equilibrium strategy, the seeker’s expected profit can be written in

the following way as a function of v:

ΠF (v) =

∫ wF

qt

[1 + λ(β(q)− t)− v]dF n(q) = LF (v) + λKF (v) (3)

where

LF (v) = (1− v)(1− F n(qt)) (4)

KF (v) = v

∫ wF

qt

∫ q

qt

sdF n−1(s)dF n(q) (5)

Equation (4) stands for the seeker’s expected profit level when λ = 0. Since equilib-

rium performance level is increasing in idea quality, the probability that there is at least

one solution with a performance at or above the threshold is given by 1−F n(qt). Hence,

when λ = 0, the seeker’s profit is 1 − v with probability 1 − F n(qt) and zero otherwise.

Her expected profit is LF (v) = (1− v)(1− F n(qt)).

Equation (5) states the additional expected profit that the seeker makes when λ > 0.

Note that the winner has the highest idea quality q(1) = max{q1, ..., qn}. From Lemma 1,

his equilibrium performance exceeds t by v
∫ q(1)
qt

sdF n−1(s). Hence, KF (v) in equation (5)

stands for the expected difference between t and the winner’s performance, and λKF (v)

stands for the seeker’s expected profit from this difference.

We consider the seeker’s maximization problem. When λ = 0, the seeker maximizes

LF (v). Notice that if v ≤ t/wF ≡ vt, equation (2) implies qt ≥ wF . This means a solver

participates only if his idea quality is wF or higher. Since this occurs with probability

zero, LF (v) = (1− v)(1− 1) = 0. Moreover, LF (v) ≤ 0 if v ≥ 1. Thus, an optimal prize

must be in (vt, 1). In addition, if the seeker’s profit LF (v) is strictly concave in v, there is

a unique optimal prize and it satisfies the first order condition L′F (v) = 0. The following
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lemma states that strict concavity of LF (v) follows from Assumption 1.

Lemma 2 Under Assumption 1, LF (v) is strictly concave for v ∈ (vt, 1).

While LF (v) is concave, KF (v) may be convex.13 Thus, when λ > 0, the profit may

not be a concave function of the prize. The following condition ensures that there is still

a unique optimal prize in (0, v̄).

Assumption 2 LF (v)− L′F (v)KF (v)/K ′F (v) is strictly increasing.

Intuitively, Assumption 2 ensures that if the objective function ΠF (v) has multiple

local maximizers, those maximizers achieve different local maxima. At the end of Section

5, we discuss how the results change when we relax this assumption.

Proposition 1 states the comparative statics result with respect to λ for a given dis-

tribution of idea quality. If λ is sufficiently large, the optimal prize may reach the upper

boundary v̄. Let λ̄F stand for the smallest value of λ such that v̄ is an optimal prize.

Recall that the optimal prize is below 1 if λ = 0, so λ̄F > 0.

Proposition 1 Under Assumptions 1 and 2, there is a unique optimal prize VF (λ) for

all marginal benefit λ 6= λ̄F . Moreover, VF (λ) is weakly increasing in λ.

Proposition 1 states that as the marginal benefit of solution performance to the seeker

increases, the seeker finds it optimal to offer a higher prize. Offering a higher prize

encourages the solvers to submit solutions with higher performance levels.

When λ = λ̄F , there may be two optimal prizes: an interior prize in (0, v̄) and v̄. Let

VF (λ̄F ) be one of the optimal prizes. Our results do not depend on the choice of optimal

prize. When there are two optimal prizes, VF (λ) is not continuous in λ.

5 Scarcity of Ideas

In this section, we study comparative statics of the optimal prize with respect to the

scarcity of high-quality ideas for a given value of λ.

5.1 Stochastic Dominance Notion of Idea Scarcity

Intuitively, the concept of idea scarcity depends on both the difficulty of the question

and the number of solvers. In particular, for a given number of solvers, as the difficulty

13For example, KF (v) is convex if F (q) = q and t = 1/2.
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level of a challenge increases, high-quality ideas would become scarcer. Similarly, in a

challenge with a given level of difficulty, as the number of participating solvers decreases,

high-quality ideas would become scarcer. To capture both of these contributing factors,

we first define an “effective quality” of a solver’s idea, and then use it to introduce a

stochastic dominance notion of idea scarcity.

Definition 1 If a solver has an idea of quality q drawn from distribution F , we define

effective quality of his idea as φF (q) ≡ qF n−1(q). Then, the c.d.f. of the effective quality

is F̂ : [0, wF ] → [0, 1] that takes the form F̂ (x) ≡ F (φ−1
F (x)). We refer to F̂ as the

effective distribution of F .

For a solver with idea qi, his effective quality is qi discounted by F n−1(qi), which is the

probability that his idea quality is higher than that of all other solvers. Hence, the concept

of effective quality, which is crucial for our analysis below, contains information on both

a solver’s marginal cost, through qi, and his probability of winning, through F n−1(qi).

Both pieces of information are important for a solver’s decision. In comparison, qi and

its distribution F , or q(1) and its distribution F n contain only one piece of information.

Remark 1 In auction theory, the expected surplus from trading with a bidder is defined

in a similar way to the effective quality defined in Definition 1 (e.g., Bulow and Roberts

1989). To see this, consider a first-price or second-price auction with n symmetric bidders

whose values are i.i.d. according to cumulative distribution function F . If the seller trades

with a bidder with value v, the total surplus is v. In equilibrium, trade happens with

probability F n−1(v), which represents the probability that the bidder’s value is higher than

the values of the other bidders. Therefore, the expected surplus from trading with a bidder

is x = vF n−1(v) and its c.d.f. is F̂ .

The effective distribution preserves important properties of the original distribution,

such as first order stochastic dominance (FOSD) and log-concavity:

Lemma 3 Distribution G first order stochastically dominates F , written as F ≺FOSD G,

if and only if F̂ ≺FOSD Ĝ.

Lemma 4 If F is log-concave, F̂ is also log-concave.

We now introduce a stochastic dominance order in order to rank idea scarcity.
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Figure 1: Distributions of Ideas

Definition 2 A distribution Ĝ dominates F̂ in the likelihood ratio order, written as

F̂ ≺LR Ĝ, if
ĝ(x)

f̂(x)
≤ ĝ(x′)

f̂(x′)

for any x < x′ and x, x′ in the common support of Ĝ and F̂ . We say F represents scarcer

ideas than G, written as F ≺ G, if F̂ ≺LR Ĝ.

Our stochastic order definition captures some important features of innovative envi-

ronments. Figure 1 illustrates two distributions with F ≺ G. The distributions in the

figure have different supports and F has a mass point at 0. In other words, in an environ-

ment where ideas are scarce, there may be more solvers with zero-quality ideas and/or

some high-quality solution ideas may not be available at all.

The above stochastic dominance order is defined indirectly using effective distribu-

tions. This approach is similar to the definition of (reverse) hazard rate dominance, which

is specified using (reverse) hazard rates. Reverse hazard rate dominance and hazard rate

dominance are widely used in the literature on auctions. We need a different stochastic

order concept because of the all-pay feature of our design and the fact that the seeker’s

profit depends on the maximum performance instead of total performance.

The following result discusses how the stochastic order introduced in Definition 2

relates to FOSD. As in the case of hazard rate or reverse hazard rate dominance, the

stochastic order stated in Definition 2 is stronger than FOSD. However, as we show in

Appendix E, it is equivalent to FOSD for many widely used parametric distribution fam-

ilies, such as exponential, log-normal, Pareto, power function and uniform distributions.

Lemma 5 F ≺ G implies F ≺FOSD G.

It is worth noting that the comparison of two distributions in terms of scarcity of
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ideas depends on n, the (exogenously given) number of potential solvers. The following

result shows that the scarcity order of two distributions is never reversed as n varies.

Lemma 6 If F ≺ G for some n ∈ N, there is no n′ ∈ N such that G ≺ F .

To see why, suppose F ≺ G for n and G ≺ F for n′. Then, Lemma 5 implies

F ≺FOSD G and G ≺FOSD F which cannot happen. Although it does not happen for the

parametric distributions considered in Appendix E, it is possible that F ≺ G holds for

some but not all n ∈ N.

Recall that (2) implies that φ−1
F (t/v) = qt, so 1 − F̂ (t/v) = 1 − F (qt) is the ex

ante probability for a solver to actively participate (i.e., submit a solution with positive

performance) in a contest. We refer to PF (v) ≡ 1−F̂ (t/v) as the participation rate and 1−
PF (v) as the non-participation rate. Then, the expected number of actively participating

players is nPF (v). The elasticity of the participation rate w.r.t. the prize is vP ′F (v)/PF (v),

and the elasticity of the non-participation rate w.r.t. the prize is −vP ′F (v)/(1− PF (v)).

The following lemma shows that scarcer ideas lead to more elastic participation and

non-participation rates. Intuitively, when high-quality ideas are scarce, solvers are more

responsive to marginal changes in the prize level.

Lemma 7 F ≺ G implies that for any v > 0,

P ′G(v)/PG(v) < P ′F (v)/PF (v) (6)

−P ′G(v)/(1− PG(v)) < −P ′F (v)/(1− PF (v)) (7)

The proof is straightforward from the definitions and is therefore omitted. Note that

all our results remain the same if we replace F ≺ G with (6) and (7). This is discussed

further in Remark 2 below. Lemma 7 implies that if a seeker could obtain information,

for instance through a survey, on the participation rates of two challenges at different

prize levels, she could compare the scarcity of ideas between the two challenges. In the

challenge with scarcer ideas, the participation rate would be lower at all prize levels.

5.2 Comparative Static Analysis

Consider two distributions, F with support [0, wF ] and G with support [0, wG], which are

twice continuously differentiable. Assume that the density functions F ′ ≡ f and G′ ≡ g

are positive. Recall that LF (v) and KF (v) described in (4) and (5) only depend on F .

Let LG(v) and KG(v) be the counterparts for distribution G. They only depend on G.

13



Assumption 3 L′F (v)/K ′F (v) and L′G(v)/K ′G(v) cross at most once.

Assumptions 3 ensures that VF (λ)− VG(λ) crosses zero exactly once.14

The following proposition is the main result of the paper. We present its proof in

Section 6.

Proposition 2 Under Assumptions 1-3, if F ≺ G, there exists a unique λ̂ > 0 such that

(i) VG(λ) < VF (λ) if λ < λ̂;

(ii) VG(λ) ≥ VF (λ) if λ > λ̂.

That is, scarcer ideas lead to a lower optimal prize if and only if the marginal benefit of

solution performance is sufficiently high.

It is worth mentioning that VG(λ̂) = VF (λ̂), VG(λ̂) < VF (λ̂) or VG(λ̂) > VF (λ̂) is

possible. In the last two cases, VG(λ) may not change continuously at λ̂, and it may

jump to v̄ if λ is slightly above λ̂.

Proposition 2 implies that the value of λ plays a critical role in determining how the

optimal prize changes with the distribution of ideas. We first illustrate Proposition 2

with the following example and then explain the intuition behind it.

Example 1 Suppose t = 0.4, n = 4, v̄ = 1.5 and consider two Pareto distributions

F (q) = 1 − (1 + q)−4 and G(q) = 1 − (1 + q)−2. The distributions satisfy Assumptions

1-3 and F ≺ G. As in Figure 2, there exists λ̂ ≈ 0.9 such that VF (λ) > VG(λ) if

λ ∈ [0, λ̂), VF (λ) = VG(λ) if λ = λ̂, and VF (λ) < VG(λ) if λ ∈ (λ̂, 3.6). For λ ≥ 3.6,

VF (λ) = VG(λ) = v̄.15

For the intuition behind the result, consider the seeker’s expected payoff function

given in (3). When λ = 0, the seeker maximizes (4). What is important is to have a solu-

tion with performance above the minimum requirement. In this case, if the distribution

of ideas shifts such that high-quality ideas become scarcer, it puts downward pressure

on the probability of success (i.e., the probability that at least one solution meets the

requirement). In addition, scarcer ideas reduce competition among the solvers and there-

fore increase participation, which puts upward pressure on the probability of success. It

turns out the first effect always dominates the second, that is, scarcer ideas lead to lower

14In general, VF (λ)−VG(λ) may not be monotone in λ. For example, Figure 2 shows that VF (λ)−VG(λ)
is decreasing for small values of λ and increasing for large values of λ.

15Recall that we assume v̄ > 1. If v̄ is too small, for instance v̄ < 0.4, the optimal prize may be forced
to be the upper bound: VG(λ) = VF (λ) = v̄ for all λ. Moreover, if v̄ < VG(λ̂) = VG(λ̂), then VF (λ)

and VG(λ) are forced to be v̄ for λ > λ̂. In this case, Proposition 2 still holds, but the strict inequality
VG(λ) > VF (λ) illustrated in Example 1 may not arise.

14
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Figure 2: Optimal Prizes

probability of success. Hence, the seeker compensates by increasing the prize level (as

implied by Lemma 8 in the next section). On the other hand, if high-quality ideas are

abundant, the probability of success is high to start with, so the seeker does not need to

have as high a prize. The marginal return of the prize is lower.

When λ > 0, the seeker maximizes the sum of (4) and (5). Now the seeker cares both

about meeting the threshold and receiving as good a solution as possible. The magnitude

of λ determines how much weight the seeker will put on (5). If the seeker increases the

prize, more solvers participate and each participating solver increases their performance.

Thus, an increase in the prize pushes the expected performance further beyond the re-

quirement. When ideas are abundant, the average idea quality (solvers’ productivity)

is higher, so the marginal return of the prize is higher. Hence, if λ is sufficiently high,

then this effect dominates and in challenges where ideas are more abundant (scarce), the

seeker finds it optimal to set a higher (lower) prize (as implied by Lemma 9 in the next

section).

In summary, while maximizing the expected payoff function ΠF (v) = LF (v)+λKF (v),

idea abundance and prizes play substitute roles in the first term and complementary roles

in the second term. This represents the main trade-off faced by a contest designer and λ

determines the relative weight of the two elements.

Remark 2 For cleaner exposition, we use the likelihood ratio order defined in Definition

2, but our results can be generalized to less restrictive stochastic orders. It is well-known

that the combination of hazard rate and reverse hazard rate orders is less restrictive than

the likelihood ratio order.16 All of our results and their proofs remain unchanged if we

replace the likelihood ratio stochastic dominance used in Definition 2 with hazard rate

and reverse hazard rate stochastic dominance. We can also relax F ≺ G to (6) and (7).

16See, for instance, Shaked and Shanthikumar (2007), p. 55.
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This is because the two inequalities imply that Ĝ stochastically dominates F̂ in terms of

reverse hazard rate and hazard rate, which is sufficient for all our results.

Remark 3 Suppose that if the maximum performance is above the minimum perfor-

mance requirement, the seeker’s profit is given by

Π(x(1), v) =

 λ(x(1) − t)− v if x(1) ≥ t

0 otherwise

instead of (1). That is, the profit is continuous in the maximum performance. Then,

LF (v) = −v(1− F n(qt)) and KF (v) remains the same. Since there is no profit obtained

from reaching the minimum performance requirement, if the marginal benefit is λ = 0,

then VF (λ) = VG(λ) = 0. By virtually the same proof as Proposition 2, we obtain the

critical value λ̂ = 0 and case (i) in Proposition 2 never arises. This means that in this

case, scarcer ideas always lead to lower prizes.

Before ending this section, we discuss how the results are different if we relax As-

sumptions 2 and 3. Without Assumption 2, there may be multiple optimal prizes. Then,

VF (λ) and VG(λ) represent the set of optimal prizes. To compare sets of possibly multiple

optimal prizes, we use the strong set order (see, e.g., Topkis, 1978).

Definition 3 For two sets A,B ⊂ Rm, A is greater than B in the strong set order,

written as A ≥ B, if, for any a ∈ A and any b ∈ B, the pointwise maximum a ∨ b ∈ A
and the pointwise minimum a ∧ b ∈ B.

If m = 1, then a ∨ b = max{a, b} and a ∧ b = min{a, b}. For example, {2, 3, 4} ≥
{1, 2, 3} and [2, 4] ≥ [1, 3]. If both A and B are singletons, the strong set order reduces

to the order over real numbers. The following proposition shows that a result similar to

Proposition 2 can be obtained if Assumptions 2 and 3 are relaxed.

Proposition 3 Under Assumption 1, if F ≺ G, there exist λ̂′ ≥ λ̂ > 0 such that

i) VF (λ) ≥ VG(λ) if λ < λ̂.

ii) VF (λ) ≤ VG(λ) if λ > λ̂′.

Notice that λ̂′ and λ̂ may be different, which is the key difference between Propositions

2 and 3. This is partly because the strong set order is only a partial order if VF (λ) or VG(λ)

contains multiple prizes. In contrast, when the optimal prize is unique as in Proposition

2, the strong set order becomes the complete order over real numbers.
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6 Proof of Proposition 2

This section contains the proof of our main result. Consider first the case with λ = 0.

Then, the seeker’s profit is given by LF (v) as in (4). Similarly, define LG(v) = (1−v)(1−
Gn(q′t)) where q′t solves

q′tG
n−1(q′t) = t/v (8)

The corresponding marginal profits are L′F (v) and L′G(v). The marginal profit functions

have two properties as illustrated in Figure 3. First, as established in Lemma 2, they are

strictly decreasing in the prize value. Second, as the prize value increases, the marginal

profit function under more abundant ideas, L′G(v), reaches the horizontal axis before the

marginal profit function under scarcer ideas, L′F (v), does. This property is formalized

below.

Lemma 8 Suppose F ≺ G. Then, L′F (v) = 0 implies L′G(v) < 0.

When λ = 0, the unique optimal prize satisfies the first order conditions L′F (v) = 0

and L′G(v) = 0. Lemma 8 implies that, when λ = 0, VF (λ) > VG(λ) (as shown in Figure

3). Hence, as high-quality ideas become scarcer, the seeker should increase the prize.

Abundance of high-quality ideas and the prize amount play substitute roles in profit

maximization.

Many comparative static results in the literature rely on submodularity or supermod-

ularity (e.g., Topkis, 1978). However, the objective function LF (v) is neither submodular

nor supermodular in (v;F ). Specifically, notice that the submodularity of LF (v) in (v;F )

requires L′G(v) < L′F (v) for all v, but Lemmas A.2 and A.4 in Appendix B show otherwise

(as illustrated in Figure 3).17 Other comparative static results in the literature rely on

single-crossing conditions (e.g., Milgrom and Shannon, 1994).18 Our comparative static

analysis is with respect to distributions, and Lemma 8 states a functional form of the

single-crossing condition for LF (v) in (v;F ).

Consider next the case when λ > 0. Then, the expected profit is ΠF (v) = LF (v) +

λKF (v), where KF (v), given in (5), is the expected additional performance beyond the

threshold t. The following lemma states two relevant properties of K ′F and K ′G.

Lemma 9 K ′F (v) > 0. Moreover, F ≺ G implies K ′F (v) < K ′G(v).

17Lemma A.2 implies L′F (1)− L′G(1) > 0 and Lemma A.4 implies L′F (t)− L′G(t) < 0 if F and G have
a common support [0, 1]. Therefore, L′F (v) and L′G(v) must intersect as in Figure 3.

18They also require quasi-submodularity of the objective function. Lemma 2 proves quasi-
submodularity of LF (v) in v.
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Figure 4: Optimal Prizes if λ is Large

Figure 4 illustrates Lemma 9. Note that in the figure, λK ′F (v) corresponds to the

vertical distance between the curves Π′F (v) and L′F (v). The first property stated in the

lemma is that the expected additional performance beyond the threshold is increasing in

the prize. Given K ′F (v) > 0, a positive λ shifts L′F (v) upwards to be Π′F (v) = L′F (v) +

λK ′F (v). Moreover, because λK ′F (v) is larger with a higher λ, VF (λ′) ≥ VF (λ) if λ′ ≥ λ.

In other words, because a larger λ leads to a higher marginal profit of prize, the optimal

prize should not be lower.

The second property stated in Lemma 9 implies that KF (v) is supermodular in (v;F ),

which means the marginal impact of the prize on KF (v) is smaller when ideas are scarcer.

In Figure 4, the distance between L′G(v) and Π′G(v) is larger than the distance between

L′F (v) and Π′F (v). As a result, if λ is sufficiently large, Π′G(v) is larger than Π′F (v).

In summary, Lemma 9 implies that a marginal increase in the prize amount pushes the

expected performance further beyond the minimal requirement. Moreover, the marginal

increase in the prize amount has higher returns if the solvers have more abundant ideas.

As a result, as high-quality ideas become more abundant, the seeker should increase the

prize. Abundance of high-quality ideas and the prize amount play complementary roles

in profit maximization.

According to Proposition 1, the optimal prize reaches the upper boundary v̄ when λ is

sufficiently large. Therefore, define λ̄F = inf{λ|VF (λ) = v̄} and λ̄G = inf{λ|VG(λ) = v̄}.19

The following lemma shows that, as λ increases from 0, VG(λ) reaches the upper boundary

before VF (λ) does.

Lemma 10 If F ≺ G, then 0 < λ̄G < λ̄F < +∞.

We now combine the lemmas above to prove Proposition 2.

19See the proof of Proposition 1 in Appendix A for the expressions of λ̄F and λ̄G.
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Proof of Proposition 2. We proceed in three steps.

Step I. VF (λ) > VG(λ) for λ close to 0. To see this, recall that if λ = 0, since

Lemma 2 states that the profit is strictly concave in the prize value, its maximum is

reached at an interior prize value. Therefore, both VF (0) and VG(0) satisfy the first order

conditions L′F (VF (0)) = 0 and L′G(VG(0)) = 0, which combined with Lemma 8 imply that

VG(0) < VF (0). By continuity of ΠF (v) in λ, if λ is sufficiently close to 0, we still have

VG(λ) < VF (λ).

Step II. VF (λ) ≤ VG(λ) if λ is large enough. Lemma 10 implies that VF (λ) ≤ VG(λ) =

v̄ for λ > λ̄G.

Step III. In this step, we show existence and uniqueness of λ̂. From Step I, VF (λ) >

VG(λ) for λ close to 0. Consider three possibilities: First, VF (λ) > VG(λ) for all λ ≤ λ̄G.

Then, λ̂ = λ̄G and the proposition holds.

Second, VF (λ) = VG(λ) for some λ ∈ (0, λ̄G]. Notice that for any λ such that VF (λ) =

VG(λ) = v, the first order conditions are

L′F (v) + λK ′F (v) = 0 (9)

L′G(v) + λK ′G(v) = 0 (10)

Solving (9) for λ and substituting into (10) yields

L′F (v)/K ′F (v) = L′G(v)/K ′G(v)

This equation has a unique solution because L′F (v)/K ′F (v) and L′G(v)/K ′G(v) cross at

most once due to Assumption 3. Thus, there is a unique λ such that VF (λ) = VG(λ).

Letting λ̂ be this unique λ gives us the result stated in the proposition.

Third, VF (λ) < VG(λ) for some λ0 ∈ (0, λ̄G]. Notice that if VF is discontinuous

at an interior point of (0, λ̄F ), there are at least two optimal prizes at this interior λ.

This contradicts with Proposition 1, so VF is continuous over (0, λ̄F ). Similarly, VG is

continuous over (0, λ̄G). Recall that VF (λ0) < VG(λ0), so λ0 < λ̄F < λ̄G and therefore

VF and VG are continuous over (0, λ0). Moreover, VF (λ) > VG(λ) if λ is sufficiently close

to 0 and that VF (λ0) < VG(λ0), so the intermediate value theorem implies that there is

a λ ∈ (0, λ0) such that VF (λ) = VG(λ). Then, we can prove the proposition as in the

second case above.
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7 Extensions

7.1 Nonlinear Benefits

So far we have assumed that the marginal benefit of additional performance above the

threshold is constant. In this section, we show that our results continue to hold when we

relax this assumption by generalizing the seeker’s benefit to

Π(x(1)) =

 1 + λB(x(1) − t)− v if x(1) ≥ t

0 otherwise

where B is differentiable and satisfies B(0) = 0, B′(x) > 0 for all x ≥ 0. It is not

necessarily concave or convex. In previous sections, we considered the special case where

B(x) = x.

Since the change in the seeker’s benefit function does not have an impact on the

solvers’ behavior, the solvers’ equilibrium strategies remain the same as in Lemma 1. As

in Section 3, we can also write the expected profit as ΠF,B(v) = LF (v) +λKF,B(v), where

LF (v) is the same as in (4) and

KF,B(v) =

∫ wF

qt

B

(
v

∫ q

qt

sdF n−1(s)

)
dF n(q)

is the expected benefit from additional performance above the threshold t.

The following two assumptions are generalizations of Assumptions 2 and 3 to nonlinear

benefit functions. They imply Assumptions 2 and 3 as special cases.

Assumption 2′ LF (v)− L′F (v)KF,B(v)/K ′F,B(v) is strictly decreasing.

Assumption 3′ L′F (v)/K ′F,B(v) and L′G(v)/K ′F,B(v) cross at most once and limx→∞B
′(x) =

b > 0.

The first part of Assumption 3′ is similar to Assumption 3, but the second part is

new. The second part requires that the marginal value B′(x) converges to a positive

value as x goes to infinity. If this is violated and the marginal value converges to zero,

for sufficiently large λ, the comparative statics are similar to λ = 0. This is because the

benefit function for sufficiently large λ has a similar shape to that with λ = 0.

By replacing Assumptions 2 and 3 with Assumptions 2′ and 3′, we can generalize

Propositions 1-3 to accommodate nonlinear benefits. This is done in Propositions A.1-

A.3. Because these results and their proofs are similar to those of Propositions 1-3, we
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relegate them to the appendix.

7.2 Endogenous Reservation Performance

In this section, we assume that the seeker can choose both a prize value v and a perfor-

mance level r such that the prize is awarded only if the highest performance is at least

r. Since r plays a similar role to a reservation price in the auction literature, we call it

reservation performance.20

Note that given the seeker’s choice (v, r), the solvers’ equilibrium strategy is the same

as in Lemma 1 except that t is replaced by r:

β(qi) =

 r + vAr(qi) if qi ≥ qr

0 otherwise

where Ar (qi) =
∫ qi
qr
sdF n−1(s) and qr is the unique solution of

qrF
n−1(qr) = r/v. (11)

An increase in r causes an upward shift in β(qi). Hence, the seeker may want to set a

higher r in order to elicit solutions with higher performance levels, which becomes more

important as λ increases.

Although the seeker may choose any r ≥ 0, we first note that choosing a reservation

performance level r < t is never optimal.21 This is because performance levels below t

are worthless to the seeker. Thus, we only need to consider r ≥ t. Given such a r ≥ t,

solvers with qi < qr do not participate and those with qi > qr choose a performance level

above r ≥ t. As a result, the expected profit of the seeker is given by∫ wF

qr

[1 + λ(β(q)− t)]dF n(q)− v(1− F n(qr))

Substituting β(q) into the profit, we can rewrite it as a function of v and qr:
22

ΠF (v, qr) = LF (v, qr) + λKF (v, qr) (12)

20Another question of interest is the optimal mechanism (see, for example, Chawla et al., 2015), and
how it varies with the distribution of idea qualities. However, this question is beyond the scope of this
paper, which focuses on a common type of innovation contests.

21See Lemma A.6.
22For more details, see Appendix D.

21



where

LF (v, qr) = (1− v)(1− F n(qr))

KF (v, qr) =

∫ wF

qr

[
vF n−1(q)

(
q − 1− F n(q)

(F n)′(q)

)
− t
]
dF n(q)

Hence, the seeker chooses (v, qr) instead of (v, r). Since r ≥ t is equivalent to qr ≥ qt,

the seeker chooses v ≥ 0 and qr ≥ qt to maximize ΠF (v, qr). Given (v, qr), r can be

recovered from (11). Let V RF (λ) denote the set of optimal pairs of (v, r) ∈ [0, v̄] × R+

when the idea quality distribution is F .

Lemma 11 If λ = 0, the optimal reservation performance level is t.

According to Lemma 11, when λ = 0, even though the seeker has the option to

choose a r value that is different from t, it is optimal to choose r = t. Announcing r < t

is not optimal because it increases expected prize payments without any benefits. It is

not optimal to announce r > t either since it causes the seeker to miss on profitable

opportunities.

The only reason for setting r > t may be to increase performance further beyond

the threshold t which becomes important for sufficiently high values of λ. The following

lemma formalizes this intuition.

Lemma 12 If λ is sufficiently large, the optimal reservation performance level is higher

than threshold t.

Assumption 4 q − 1− F n(q)

(F n)′(q)
increases in q, and limq→wF

(
q − 1− F n(q)

(F n)′(q)

)
> 0.23

Assumption 4 states that the virtual valuation of q(1), the best idea quality, is increas-

ing, and it is positive at the highest value in the support. This assumption ensures that

for all λ, each solver’s probability of participation is bounded away from zero under the

optimal reservation performance and prize.24

In order to compare V RF (λ) for different λ, we need to use the strong set order

given in Definition 3 for higher dimensions with m = 2. We can also use the order to

define monotonicity of V RF (λ) and V RG(λ). For example, we say V RF (λ) is monotone

non-decreasing/non-increasing in λ if for any λ1 > λ2, V RF (λ1) is no lower/higher than

V RF (λ2). The following result is analogous to Proposition 1.

23This assumption allows for the case where limq→wF

(
q − 1− Fn(q)

(Fn)′(q)

)
= +∞.

24See the proof of Proposition 4 in Appendix D.
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Proposition 4 Under Assumptions 1 and 4, there exist λ′′ ≥ λ′ > 0 such that

i) V RF (λ) is monotone non-decreasing for λ < λ′.

ii) V RF (λ) is monotone non-increasing for λ > λ′′.

As different from Proposition 1, Proposition 4 considers both the optimal prize and

the optimal reservation performance, but it focuses on sufficiently small or large λ values

only. In the proof of Proposition 4, we show that for λ sufficiently small, the optimal

reservation performance is equal to the threshold, and the optimal prize is increasing in

λ. In contrast, for sufficiently large λ, the optimal prize is equal to the upper boundary v̄,

and the optimal reservation performance is strictly decreasing in λ. Hence, the optimal

prize is weakly increasing in λ for λ < λ′ and λ > λ′′, which is in line with Proposition 1.

The intuition for the above result is as follows. Notice that ∂2LF (v,qr)
∂v∂qr

> 0, and qr is

strictly increasing in r due to (11), so v and r play complementary roles in LF (v, qr). In

contrast, ∂2KF (v,qr)
∂v∂qr

< 0, which means v and qr play substitute roles in KF (v, qr).
25 As a

result, as λ increases from 0, the optimal v and qr first change in the same direction due

to their impact on LF (v, qr), but eventually they may move in different directions due to

their impact on KF (v, qr).

For a given λ, let V RG(λ) be the set of optimal (v, r) associated with distribution G.

Recall that r = 0 if λ = 0. Therefore, Proposition 2 implies that V RF (λ) ≥ V RG(λ) if

λ = 0. The comparison of V RF (λ) and V RG(λ) for sufficiently large λ is closely related

to the two equations below:

F n−1(q)

(
q − 1− F n(q)

(F n)′(q)

)
= t/v̄ (13)

Gn−1(q)

(
q − 1−Gn(q)

(Gn)′(q)

)
= t/v̄ (14)

Equation (13) is the first order condition ∂ΠF (v,qr)
∂qr

= 0 evaluated at λ → ∞, and (14)

is the counterpart for G.26 These equations have a unique solution under Assumption

4. Let qF be the solution to (13) and qG be the solution to (14). The following result

compares V RF (λ) and V RG(λ):

Proposition 5 Under Assumptions 1 and 4, if F ≺ G, there exist λ̂′ ≥ λ̂ > 0 such that

i) for λ < λ̂, V RF (λ) ≥ V RG(λ).

ii) for λ > λ̂′, V RF (λ) ≤ V RG(λ) if qGG
n−1(qG) ≥ qFF

n−1(qF );

V RF (λ) ≥ V RG(λ) if qGG
n−1(qG) < qFF

n−1(qF ).

25Notice that KF (v, qr) =
∫ wF

qr
[β(q)− t] dFn(q), so ∂2KF (v,qr)

∂v∂qr
= −Ar(qr)(Fn)′(qr) < 0.

26See the proof of Proposition 5 in Appendix D.
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Figure 6: Optimal Reservation Performance

Proposition 5 is analogous to Proposition 3. We show in the proof of Proposition 5

that the optimal reservation performance is equal to the threshold for λ < λ̂. Hence, part

i) of Proposition 5 generalizes part i) of Proposition 3 by considering both the optimal

prize and reservation performance. The difference in part ii) between Propositions 3 and

5 comes from the optimal reservation performance. As we show in the proof, the optimal

reservation performance with G, representing the case of more abundant ideas, will be

lower if the corresponding effective quality of qG is lower than that of qF .

The results in Proposition 5 follow from the following observations made in the proof.

When λ is sufficiently small, the optimal prize associated with F is higher than that

associated with G. The optimal reservation performance under both F and G is the

same and equal to r. When λ is sufficiently large, the optimal prize under both F and

G is equal to the upper boundary v̄. If λ → +∞, the optimal reservation performance

associated with F is above r and converges to v̄qFF
n−1(qF ) and that associated with G

is above r and converges to v̄qGG
n−1(qG).

The following example illustrates Proposition 5.

Example 2 Consider Example 1, but now assume that the seeker chooses (v, r). Recall

that t = 0.4, n = 4, v̄ = 1.5. For each λ, there is a unique optimal prize, denoted as

VF (λ), and a unique optimal reservation performance, denoted as RF (λ). There exists

λ̂ = 0.50 such that VF (λ) > VG(λ) and RF (λ) = RG(λ) for λ < λ̂, and VG(λ) ≥ VF (λ)

and RG(λ) > RF (λ) for λ > λ̂. Figures 5 illustrates the optimal prizes and Figure 6

illustrates the optimal reservation performance.
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8 Conclusion

Although innovation contests have a long history, there has been an increase in their use

in recent years. One of the reasons for this growth in popularity of innovation contests is

that progress in information technology has made it easier to run innovation contests using

the Internet. As a result, several innovation platforms have emerged on the Internet as

the meeting place of seekers of innovative solutions and solvers of innovation problems.27

Especially when it is not possible to identify ex ante who has the expertise to solve a

specific challenge, it is useful to make the challenge public to many potential solvers.28

For designers of innovation contests, a significant challenge is what prize to set. We

model innovation contests assuming both ideas and effort are integral parts of the inno-

vation process. When the innovation challenge is a difficult one and high-quality ideas

will not be commonly observed, is it always optimal to post a high prize? We analyze

this question by introducing a novel way of capturing idea scarcity with a new order of

stochastic dominance.

Our analysis uncovers that while determining the prize level, contest designers should

consider how much they will benefit from a marginal increase in performance as well as

how difficult the challenge is. It is not necessarily the case that they should incentivize

harder challenges with higher prizes. If the marginal benefit of performance is low, the

optimal prize increases with the scarcity of ideas; if the marginal benefit is higher, the

optimal prize decreases with the scarcity of ideas.

27See, for example, InnoCentive, IdeaConnection, and OpenIDEO.
28Indeed, Jeppesen and Lakhani (2010) provide evidence that the winning solution may often come

from “nonobvious individuals”.
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Appendix

A Omitted Proofs in Sections 4-6

Proof of Lemma 1. First, consider the case without the performance threshold, i.e.,

t = 0. Assume that all other solvers choose performance according to the function β0,

and assume that this function is strictly increasing and differentiable. The subscript

represents the value of t. A solver’s problem is

max
x

vF n−1(β−1
0 (x))− x/q

and the first order condition is

v
dF n−1(β−1

0 (x))

dx
− 1

q
= 0

In equilibrium, the solver chooses performance level x = β0 (q), so q = β−1
0 (x). Denoting

β−1
0 (x) as y and substituting the expressions of y and q into the first order condition, we

obtain

1 = vy
dF n−1(y)

dx
(A.1)

As a solver’s idea quality q → 0, his cost of any given performance level goes to

infinity. Hence, the optimal performance level must converge to 0, and this yields the

boundary condition y(0) = 0.

Note that the right hand side of (A.1) is a function of y, which means it is a differential

equation with separated variables. Thus, its solution with initial condition y(0) = 0 is

given by29

∫ x

0

ds = v

∫ y

0

s
dF n−1(s)

ds
ds

Denoting H0(y) = v
∫ y

0
sdF

n−1(s)
ds

ds, we can rewrite the above equation as x = H0(y) =

H0(β−1
0 (x)), and therefore β0(x) = H0(x). Thus, the performance function for every

solver is

β0(q) = v

∫ q

0

s
dF n−1(s)

ds
ds = v

∫ q

0

sdF n−1(s)

which is clearly strictly increasing and differentiable. Notice that the only possible atom

point of F is at s = 0, so the size of the atom, F (0), does not affect the above integral.

29See Arnold (1984), p.42 for a detailed discussion of differential equations with separated variables.
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Assuming that all solvers other than i play according to β0, we need to show that,

for any idea quality q of solver i, the performance β0(q) maximizes the expected payoff

corresponding to that idea quality. Let π(x, q) = vF n−1(β−1
0 (x)) − x/q be the expected

payoff of solver i with idea q that chooses performance level x. We will show that

derivative πx(x, q) is nonnegative if x is smaller than β0(q) and nonpositive if x is larger

than β0(q). As π(x, q) is continuous in x, this implies that x = β0(q) maximizes π(x, q).

Notice that

πx(x, q) = v(n− 1)F n−2(β−1
0 (x))f(β−1

0 (x))
dβ−1

0 (x)

dx
− 1

q

Let x < β0(q), and let q̂ be the idea quality of a solver who is supposed to choose

performance x, i.e., β0(q̂) = x. Note that q̂ < q because β0 is strictly increasing. Dif-

ferentiating πx(x, q) with respect to q yields πxq(x, q) = 1/q2 > 0. Since q̂ < q, we

obtain πx(x, q) ≥ πx(x, q̂). Since x = β0(q̂) we obtain by the first order condition that

πx(x, q̂) = 0, and therefore that πx(x, q) ≥ 0 for every x < β0(q). A similar argument

shows that πx(x, q) ≤ 0 for every x > β0(q).

So far we have derived the equilibrium strategy β0 when t = 0. Next, we consider

the case with t > 0 and derive the symmetric equilibrium strategy βt. Since a solver has

to choose at least t to possibly win, it is optimal for a solver with a sufficiently low idea

quality to choose zero and not participate. Assume that a solver does not participate if

his idea quality is below some critical level qt > 0 (to be derived below). This means

βt(q) = 0 for q < qt and βt(q) ≥ t for q ≥ qt. If βt(qt) > t, by deviating to x = t, a solver

can achieve the same probability of winning at a lower cost. Thus, βt(qt) = t.

It remains to characterize βt(q) for q > qt. Assume that βt is strictly increasing and

differentiable for q > qt. Suppose all other solvers follow strategy βt. Then, if a solver’s

idea quality is at the critical level qt, he must be indifferent between choosing performance

0 and t, i.e.

vF n−1(qt)− t/qt = 0

which can be rewritten as qtF
n−1(qt) = t/v and uniquely determines qt.

For x ≥ t, y = β−1
t (x). Then we can verify that the first order condition is the same

as (A.1). Thus, its solution y with initial condition y(t) = qt is given by∫ x

t

ds = v

∫ y

t

s
dF n−1(s)

ds
ds

In the same way to derive β0, the above equation implies βt(q) = t + v
∫ q
qt
sdF n−1(s) for
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q ≥ qt. Notice that function βt is equal to β0 for t = 0.

Proof of Lemma 2. The proof consists of two steps. First, we show that d logF (qt)/dv

is negative and increasing in v. To see this, notice that (2) implies

dqt
dv

= − t

v2

1

F n−1(qt) + (n− 1)qtF n−2(qt)f(qt)

so

d logF (qt)

dv
=

f(qt)

F (qt)

dqt
dv

= − f(qt)

F (qt)

t

v2

1

F n−1(qt) + (n− 1)qtF n−2(qt)f(qt)

= − t

v2

1

n− 1

1

F n−1(qt)

(
qt +

1

n− 1

F (qt)

f(qt)

)−1

= −qt
v

1

n− 1

(
qt +

1

n− 1

F (qt)

f(qt)

)−1

(A.2)

where the last equality is from F n−1(qt) = t/(qtv). If v increases, qt decreases due to

(2), and qt + 1
n−1

F (qt)
f(qt)

increases due to Assumption 1. Therefore, d logF (qt)/dv in (A.2)

increases in v.

Second, we prove the lemma. According to (4), we have

L′F (v) = F n(qt)− (1− v)
dF n(qt)

dv
− 1 (A.3)

= F n(qt)

(
1 + (1− v)

(
− 1

F n(qt)

dF n(qt)

dv

))
− 1

= F n(qt)

(
1 + (1− v)n

(
−d logF (qt)

dv

))
− 1

If v increases, F n(qt) and 1 − v decrease. −d logF (qt)/dv also decreases because of the

first step. Hence, L′F (v) decreases in v.

Proof of Proposition 1. The proof has four steps.

Step 1. There exists λ̄F such that for any λ > λ̄F , there is vλ such that Π′F (v) > 0 for

v > vλ. This means function ΠF has an increasing tail if λ is large enough.

To see this, recall that if λ = 0, there is a unique optimal prize in (vt, 1). Thus, if λ̄F
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exists, it is larger than 0. Taking derivatives of both sides of (5) w.r.t. v, we obtain

K ′F (v) =

∫ wF

qt

(∫ q

qt

sdF n−1(s)

)
dF n(q)− vqt(1− F n(qt))

dF n−1(qt)

dv

=

∫ wF

qt

∫ wF

s

sdF n(q)dF n−1(s)− vqt(1− F n(qt))
dF n−1(qt)

dv

=

∫ wF

qt

s(1− F n(s))dF n−1(s)− vqt(1− F n(qt))
dF n−1(qt)

dv
(A.4)

where the second equation comes from changing the order of integration. To show the

existence of λ̄F , notice that (2) implies qt → 0 as v → +∞, so (A.4) implies

lim
v→+∞

K ′F (v) =

∫ wF

0

s(1− F n(s))dF n−1(s)

+ lim
v→+∞

[(
−dF (qt)

dv

)
v(n− 1)qt

1− F n(qt)

F n−1(qt)

]
≥ n

t

∫ wF

0

s(1− F n(s))dF n−1(s) > 0 (A.5)

where the first inequality comes from dF (qt)/dv < 0 established in the proof of Lemma

2.

Next, we show limv→+∞ L
′
F (v) = −1. Intuitively, if the prize is large enough, every

solver chooses performance above the threshold, so the marginal effect is simply the

marginal cost of the prize. Formally, recall that in the proof of Lemma 2 we obtain

L′F (v) = F n(qt)

(
1 + (1− v)n

(
−d logF (qt)

dv

))
− 1

Substituting (A.2) into this equation, we can rewrite it as

L′F (v) = F n(qt)

(
1 +

(1− v)qt
v

n

n− 1

(
qt +

1

n− 1

F (qt)

f(qt)

)−1
)
− 1

Rewrite (2) as v = t
qtFn−1(qt)

and substitute it into the above expression. Then, we can

rewrite L′F (v) as a function of qt:

L′F (v) = F n(qt) +
n

t

q2
tF

2n−1(qt)f(qt)− tqtF n(qt)f(qt)

(n− 1)qtf(qt) + F (qt)
− 1

Notice that (2) implies qt → 0 as v → +∞, which means solvers with any positive idea
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quality participate if the prize is high enough. Therefore, the above equation implies

lim
v→+∞

L′F (v) =
n

t
lim
qt→0

q2
tF

2n−1(qt)f(qt)− tqtF n(qt)f(qt)

(n− 1)qtf(qt) + F (qt)
− 1

=
n

t

limqt→0 q
2
tF

2n−1(qt)f
′(qt)− t limqt→0 qtF

n(qt)f
′(qt)

nf(0) + (n− 1) limqt→0 qtf ′(qt)
− 1

= −1 (A.6)

where the second equality is due to L’Hôpital’s rule and the last follows from f(0) > 0

and f ′(0) < +∞.

Let λ̄F = 1/ limqt→0

∫ wF
qt

s(1−F n(s))dF n−1(s), which is in (0,+∞). Then, for λ > λ̄F ,

lim
v→+∞

L′F (v) + λ lim
v→+∞

K ′F (v) > lim
v→+∞

L′F (v) + λ̄F lim
v→+∞

K ′F (v) ≥ −1 + 1 = 0

where the second inequality follows from (A.5) and limv→+∞ L
′
F (v) = −1. Thus, for any

given λ > λ̄F , there is vλ such that Π′F (v) > 0 for v > vλ.

Step 2. We show that VF (λ) = v̄ if λ > λ̄F and VF (λ) < v̄ if λ < λ̄F . If λ > λ̄F , Step

1 above shows that function ΠF has an increasing tail. Then, the optimal prize is v̄. If

λ < λ̄F , the definition of λ̄F implies VF (λ) < v̄.

Step 3. We show that there is a unique optimal prize if λ < λ̄F . Suppose this is not

true. Then, there are two prizes v, v′ ∈ VF (λ) for some λ < λ̄F . Step 2 above implies

that v and v′ are smaller than v̄. Then, the first order conditions are

L′F (v) + λK ′F (v) = 0

L′F (v′) + λK ′F (v′) = 0

Moreover, the objective function must have the same value at v and v′, i.e.,

LF (v) + λKF (v) = LF (v′) + λKF (v′)

Solving for λ from the first order conditions and substituting into the above equation, we

obtain

LF (v)− L′F (v)

K ′F (v)
KF (v) = LF (v′)− L′F (v′)

K ′F (v′)
KF (v′)

However, this is impossible because LF (v) − L′F (v)

K′F (v)
KF (v) is strictly monotone due to

Assumption 2.
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Step 4. We prove the monotonicity of VF (λ). From Step 2, VF (λ) = v̄ for λ > λ̄F ,

so it is weakly increasing. For λ < λ̄F , there is a unique optimal prize because of Step

3, and it is interior because of Step 2. Thus, the optimal prize solves Π′F (v) = 0. In

addition, from their definitions, both qt and KF (v) increase in v. Therefore, a higher λ

shifts Π′F (v) = L′F (v)+λK ′F (v) upwards. Hence, VF (λ) strictly increases in λ for λ < λ̄F .

Proof of Lemma 3. The proof has two steps.

Step 1. We show that F̂ ≤FOSD Ĝ implies F ≤FOSD G. We first show that

F (0) ≥ G(0). Suppose otherwise that F (0) < G(0). Notice that limx→0 F̂ (x) =

limx→0 F (φ−1
F (x)) = F (0). Similarly, limx→0 Ĝ(x) = G(0). Thus, F (0) < G(0) implies

limx→0 F̂ (x) < limx→0 Ĝ(x), which contradicts F̂ ≤FOSD Ĝ.

Next, we prove that F ≤FOSD G. Suppose otherwise that there exists q′ ∈ [0, wF ] such

that F (q′) < G(q′). Then, the first step and the intermediate value theorem imply that

there is q ∈ (0, wF ) such that F (q) = G(q). Define q̂ = max{q ∈ (0, q′)|F (q) = G(q)}.
Then, F (q̂) = G(q̂) and F (q̂ + ε) < G(q̂ + ε) for sufficiently small ε > 0. Moreover,

let x̂ = q̂F n−1(q̂) = q̂Gn−1(q̂). Then, by their definitions, φF (q̂ + ε) < φG(q̂ + ε) and

φ−1
F (x̂+∆) > φ−1

G (x̂+∆) for sufficiently small ∆ > 0. Recall that φ−1
F (x)F n−1(φ−1

F (x)) = x

and φ−1
G (x)Gn−1(φ−1

G (x)) = x, so

φ−1
F (x)F n−1(φ−1

F (x)) = φ−1
G (x)Gn−1(φ−1

G (x)).

Since φ−1
F (x̂ + ∆) > φ−1

G (x̂ + ∆), the above equation implies F n−1(φ−1
F (x̂ + ∆)) <

Gn−1(φ−1
F (x̂ + ∆)), which is equivalent to F̂ (x̂ + ∆) < Ĝ(x̂ + ∆). This contradicts

F̂ ≤FOSD Ĝ.

Step 2. We show that F ≤FOSD G implies F̂ ≤FOSD Ĝ. Because F ≤FOSD G, we

have qF n−1(q) ≥ qGn−1(q). Then the solution of

qF n−1(q) = x (A.7)

must be smaller than that of

qGn−1(q) = x (A.8)

That is, φ−1
F (x) ≤ φ−1

G (x). Notice that (A.7) and (A.8) imply

φ−1
F (x)F n−1(φ−1

F (x)) = φ−1
G (x)Gn−1(φ−1

G (x))

34



so the above inequality implies F n−1(φ−1
F (x)) ≥ Gn−1(φ−1

G (x)), which combined with the

definitions of F̂ and Ĝ implies F̂ (x) ≥ Ĝ(x).

Proof of Lemma 4. Using the definition of F̂ , we have

d log F̂ (x)

dx
=
d logF (φ−1

F (x))

dx
=
f(φ−1

F (x))

F (φ−1
F (x))

dφ−1
F (x)

dx

Denote qx ≡ φ−1
F (x) and substitute it into the equation above. We obtain

d log F̂ (x)

dx
=

f(qx)

F (qx)

1

φ′F (qx)

=
f(qx)

F (qx)

1

F n−1(qx) + (n− 1)qxF n−2(qx)f(qx)

=
1

n− 1

1

F n−1(qx)

(
qx +

1

n− 1

F (qx)

f(qx)

)−1

(A.9)

Assumption 1 implies that qx+ 1
n−1

F (qx)
f(qx)

increases in qx for n ≥ 2. Moreover, if x increases,

qx increases. Therefore, (A.9) decreases in x, which means F̂ is log-concave.

Proof of Lemma 5. It is well-known that F̂ ≺LR Ĝ implies F̂ ≺FOSD Ĝ, which,

combined with Lemma 3, implies F ≺FOSD G.

Proof of Lemma 8. Using equation (A.3), we can rewrite L′F (v) = 0 as

F n(qt)− (1− v)
dF n(qt)

dv
− 1 = 0 (A.10)

Similarly, we can rewrite L′G(v) < 0 as

Gn(q′t)− (1− v)
dGn(q′t)

dv
− 1 < 0 (A.11)

Suppose L′F (v) = 0. Then equation (A.10) implies

1− v = (F n(qt)− 1)

(
dF n(qt)

dv

)−1

Substituting it into (A.11), we can rewrite L′G(v) < 0 as

Gn(q′t)− (F n(qt)− 1)

(
dF n(qt)

dv

)−1
dGn(q′t)

dv
− 1 < 0 (A.12)

It remains to show (A.12). Recall that in the first step to prove Lemma 2, we obtain
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dF n(qt)/dv < 0 and dGn(q′t)/dv < 0, so (A.12) can be rewritten as

− dF n(qt)

dv

1

1− F n(qt)
> −dG

n(q′t)

dv

1

1−Gn(q′t)
(A.13)

Recall that the definition of F ≺ G requires F̂ ≺LR Ĝ, which implies F̂ n ≺LR Ĝn due to

Theorem 1.C.33 of Shaked and Shanthikumar (2007). Then, (A.13) holds because

LHS of (A.13) =
(F̂ n)′(t/v)

1− F̂ n(t/v)

t

v2
>

(Ĝn)′(t/v)

1− Ĝn(t/v)

t

v2
= RHS of (A.13)

where the equalities follow from the definitions of F̂ and Ĝ and the inequality follows

from the hazard rate dominance implied by F̂ n ≺LR Ĝn. Hence, (A.12) also holds.

Proof of Lemma 9. If v increases, qt decreases. Therefore, (5) implies that KF (v) is

increasing in v.

We prove K ′F (v) < K ′G(v) in two steps. First, note that

qt(1− F n(qt))
dF n−1(qt)

dv
≥ q′t(1−Gn(q′t))

dGn−1(q′t)

dv
(A.14)

To see why, notice that equation (2) implies

qt =
t

v

1

F n−1(qt)

Substituting this expression into (A.14), we have

LHS of (A.14) =
t

v
(1− F n(qt))

dF n−1(qt)

dv

1

F n−1(qt)

=
t

v
(1− F n(qt))

dF n−1(qt)

d(t/v)

1

F n−1(qt)

(
− t

v2

)
=

t

v
(1− F n(qt))

dF̂
n−1
n (t/v)

d(t/v)

1

F̂
n−1
n (t/v)

(
− t

v2

)
(A.15)

Notice that F̂ ≺LR Ĝ implies Ĝ dominates F̂ in terms of reverse hazard rate. Therefore,

Ĝ
n−1
n also dominates F̂

n−1
n in terms of reverse hazard rate. That is,

dF̂
n−1
n (t/v)

d(t/v)

1

F̂
n−1
n (t/v)

≤ dĜ
n−1
n (t/v)

d(t/v)

1

Ĝ
n−1
n (t/v)
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As a result, equation (A.15) implies

LHS of (A.14) ≥ t

v
(1− F n(qt))

dĜ
n−1
n (t/v)

d(t/v)

1

Ĝ
n−1
n (t/v)

(
− t

v2

)
≥ RHS of (A.14)

Second, we use equation (A.14) to prove Lemma 9. Following the same argument as

for (A.4), we have

K ′G(v) =

∫ wG

q′t

s(1−Gn(s))dGn−1(s)− vq′t(1−Gn(q′t))
dGn−1(q′t)

dv

Because of (A.14), it is sufficient to show∫ wF

qt

s(1− F n(s))dF n−1(s) ≤
∫ wG

q′t

s(1−Gn(s))dGn−1(s) (A.16)

Lemma 3 implies that

G(q) ≤ F (q) (A.17)

Moreover, we have qt < q′t. Therefore,∫ wG

q′t

Gn−1(s)ds ≤
∫ wF

qt

F n−1(s)ds (A.18)

We also have∫ wF

qt

sdF n−1(s) = wF − qtF n−1(qt)−
∫ wF

qt

F n−1(s)ds

= wF −
t

v
−
∫ wF

qt

F n−1(s)ds (A.19)

where the first equality comes from integration by parts and the second one comes from

(2). Similarly, ∫ wG

q′t

sdGn−1(s) = wG −
t

v
−
∫ wG

q′t

Gn−1(s)ds (A.20)
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Therefore, ∫ wF

qt

sdF n−1(s) = wF −
t

v
−
∫ wF

qt

F n−1(s)ds

≤ wG −
t

v
−
∫ wG

q′t

Gn−1(s)ds

=

∫ wG

q′t

sdGn−1(s) (A.21)

where the first equality comes from (A.19), the inequality comes from wF ≤ wG and

(A.18), and the last equality comes from (A.20). Note that if wG or wF = +∞, the above

analysis applies as well.

Therefore, (A.17) implies 1−F n(s) ≤ 1−Gn(s), which combined with (A.21) implies

(A.16).

Proof of Lemma 10. We prove in three steps. First, limv→+∞K
′
F (v) < limv→+∞K

′
G(v).

Because limv→+∞ qt = limv→+∞ q
′
t = 0, as in the proof of Lemma 9, it is sufficient to show

that ∫ wF

0

s(1− F n(s))dF n−1(s) <

∫ wG

0

s(1−Gn(s))dGn−1(s) (A.22)

Because G(q) ≤ F (q) and the inequality holds strictly for a set of positive measure, we

have ∫ wG

0

Gn−1(s)ds <

∫ wF

0

F n−1(s)ds

Notice that this inequality is analogous to (A.18), which is used to prove (A.16). Hence,

we can use this inequality to prove (A.22) following the same argument used to prove

(A.16).

Second, limv→+∞(L′F (v) + λ̄GK
′
F (v)) < 0. By the definition of λ̄G, we have

lim
v→+∞

L′G(v) + λ̄G lim
v→+∞

K ′G(v) = 0 (A.23)

Recall that limv→+∞K
′
G(v) > 0 due to (A.5), so (A.23) implies

λ̄G = − limv→+∞ L
′
G(v)

limv→+∞K ′G(v)
(A.24)
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Hence, we have

lim
v→+∞

L′F (v) + λ̄G lim
v→+∞

K ′F (v) = lim
v→+∞

L′F (v)− lim
v→+∞

L′G(v)
limv→+∞K

′
F (v)

limv→+∞K ′G(v)

< lim
v→+∞

L′F (v)− lim
v→+∞

L′G(v)

= 0

where the inequality follows from limv→+∞K
′
F (v) < limv→+∞K

′
G(v) in the first step and

0 < limv→+∞K
′
F (v) in (A.5), and the last equality follows from (A.6).

Third, we prove the lemma. In the proof of Proposition 1, we obtain λ̄F ∈ (0,+∞), so

similarly, λ̄G ∈ (0,+∞). In addition, by the definition of λ̄F , we have limv→+∞(L′F (v) +

λ̄FK
′
F (v)) = 0. Therefore, the second step above implies λ̄G < λ̄F . Hence, 0 < λ̄G <

λ̄F < +∞.

Proof of Proposition 3. The proposition follows from Steps I and II in the proof of

Proposition 2. Notice that in these two steps, we do not use Assumptions 2 and 3.

B Proof of the Properties stated in Footnote 15

We prove the properties through Lemmas A.1-A.4.30

Lemma A.1 If F ≺ G, then qt < q′t and F (qt) > G(q′t).

Proof. The definition of F̂ ≺LR Ĝ implies F̂ (q) ≥ Ĝ(q), which combined with Lemma 3

implies F (q) ≥ G(q). Therefore, we have φF ≥ φG, so qt ≤ q′t. Since (2) and (8) imply

qtF
n(qt) = q′tG

n(q′t), inequality qt ≤ q′t implies F (qt) ≥ G(q′t).

Lemma A.2 L′F (1) > L′G(1).

Proof. Suppose v = 1, equation (A.3) implies L′G(v) − L′F (v) = Gn(q′t) − F n(qt) < 0,

where the inequality comes from Lemma A.1.

Lemma A.3 F ≺ G implies that G(q′t)/F (qt) decreases in v.

30We use different numbering for lemmas which only appear in the appendix.
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Proof.

d

dv

(
log

G(q′t)

F (qt)

)
=

d logG(q′t)

dv
− d logF (qt)

dv

=
d log Ĝ(t/v)

d(t/v)

(
− t

v2

)
− d log F̂ (t/v)

d(t/v)

(
− t

v2

)
=

ĝ(t/v)

Ĝ(t/v)

(
− t

v2

)
− f̂(t/v)

F̂ (t/v)

(
− t

v2

)
< 0

where the inequality comes from the reverse hazard rate dominance in the definition of

F ≺ G.

Lemma A.4 Suppose F ≺ G and F and G have a common support [0, 1]. Then, L′F (t) <

L′G(t).

Proof. If v = t, equation (2) becomes qtF
n−1(qt) = 1. Since the LHS is strictly increasing

in qt, this equation has a unique solution qt = 1. Then, the common support [0, 1] implies

qt = q′t = F (qt) = G(q′t) = 1 (A.25)

If v = t, we also have

dF n(qt)

dv
=
dF̂ n(t/v)

d(t/v)

(
− t

v2

)
= −n

t
f̂(1) > −n

t
ĝ(1) =

dGn(q′t)

dv
(A.26)

where the second equality comes from v = t and the inequality comes from f̂(1) < ĝ(1)

implied by the reverse hazard rate dominance in the definition of F ≺ G.

Therefore,

L′G(v)− L′F (v) = [Gn(q′t)− F n(qt)]− (1− v)

(
dGn(q′t)

dv
− dF n(qt)

dv

)
= (1− 1)− (1− v)

(
dGn(q′t)

dv
− dF n(qt)

dv

)
> 0

where the second equality comes from (A.25) and the inequality comes from (A.26).
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C Omitted Proofs in Section 7.1

We denote the optimal prizes for nonlinear benefits as VF,B and VG,B for distributions F

and G, respectively. The following result generalizes Lemma 10 to the case of nonlinear

benefits.

Lemma A.5 Under Assumptions 1 and 2′, if F ≺ G, then 0 < λ̄G,B < λ̄F,B < +∞,

where λ̄F,B = inf{λ|VF,B(λ) = v̄} and λ̄G,B = inf{λ|VG,B(λ) = v̄}.

Proof. First we show limv→+∞K
′
F,B(v) = b limv→+∞K

′
F (v). Notice that the definition

of KF,B implies

K ′F,B(v) =

∫ wF

qt

B′
(
v

∫ q

qt

sdF n−1(s)

)(∫ q

qt

sdF n−1(s)− vqt
dF n−1(qt)

dv

)
dF n(q)

so

lim
v→+∞

K ′F,B(v) = b

∫ wF

0

(∫ q

0

sdF n−1(s) + lim
v→+∞

vqt
dF n(qt)

dv

)
dF n(q)

= b

∫ wF

0

(∫ q

0

sdF n−1(s)

)
dF n(q)

= b

∫ wF

0

s(1− F n(s))dF n−1(s) (A.27)

where the second equation comes from limv→∞ vqtdF
n(qt)/dv = 0, and the last from

changing the order of integration. In addition, (A.4) implies that

lim
v→+∞

K ′F (v) =

∫ wF

0

s(1− F n(s))dF n−1(s)− lim
v→+∞

vqt(1− F n(qt))
dF n−1(qt)

dv

=

∫ wF

0

s(1− F n(s))dF n−1(s) (A.28)

where the second equation is also from limv→∞ vqtdF
n(qt)/dv = 0. Hence, (A.27) and

(A.28) imply that limv→+∞K
′
F,B(v) = b limv→+∞K

′
F (v).

Next, we prove the lemma. Notice that the proof of Lemma 10 only uses limv→+∞K
′
F (v).

Because of the first step above, the proof of Lemma 10 applies to nonlinear benefit func-

tion B as well.

Proposition A.1 Under Assumptions 1 and 2′, there is a unique optimal prize VF,B(λ)

for any λ 6= λ̄F,B. Moreover, VF,B(λ) is weakly increasing in λ.

The proof is the same as that of Proposition 1 and is therefore omitted. The following
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result generalizes Proposition 2 to nonlinear benefit functions using a similar kind of

argument.

Proposition A.2 Under Assumptions 1, 2′ and 3′, if F ≺ G, there exists λ̂ > 0 such

that

i) VG,B(λ) < VF,B(λ) if λ < λ̂

ii) VG,B(λ) ≥ VF,B(λ) if λ > λ̂

Proof. If λ = 0, the expected profit is ΠF,B(v) = LF (v), which is the same as the

expected profit in Section 4. Therefore, following the same argument as in the proof of

Proposition 2, we have VF (λ) > VG(λ) if λ is small.

Replacing Lemma 10 with Lemma A.5, we can follow the same arguments as in Steps

II and III of the proof of Proposition 2 to prove this proposition.

Assumptions 2′ and 3′ ensure that the optimal prize is unique and that there is a

unique λ̂ at which the order of the optimal prizes switches. Without Assumption 2′,

there may be multiple optimal prizes. Then, let VF,B(λ) and VG,B(λ) represent the set

of optimal prizes. The following proposition states that a result similar to Proposition 3

holds. The proof is the same as that of Proposition 3, so we omit it here.

Proposition A.3 Under Assumption 1, if F ≺ G, there exist λ̂′ ≥ λ̂ > 0 such that

i) VG,B(λ) ≤ VF,B(λ) if λ < λ̂

ii) VG,B(λ) ≥ VF,B(λ) if λ > λ̂′

D Omitted Proofs in Section 7.2

Lemma A.6 A reservation performance r < t is never optimal.

Proof. Suppose the seeker chooses r < t. The seeker’s expected payoff is∫ wF

qt

[1 + λ(β(q)− t)]dF n(q)− v(1− F n(qr))

The first term is her gross profit from the best performance and the second term is the cost

of giving up the prize v. Note that the solvers with ideas qi ∈ [r, t) choose performances

above r, but their performances are worthless to the seeker because they are still below

t. Thus, the integration in the first term is for q ≥ qt.

Note that qr decreases as r increases. Thus, the gross profit (the first term) remains

the same, but the cost (the second term) is lower. This means an increase in r leads to

an increase in the seeker’s profit. Hence, r < t is never optimal.
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Derivation of equation (12) According to the equilibrium strategies, the expected

highest performance is∫ wF

qr

β(q)dF n(q) =

∫ wF

qr

(
r + v

∫ q

qr

sdF n−1(s)

)
dF n(q)

=

∫ wF

qr

(
vqrF

n−1(qr) + v

∫ q

qr

sdF n−1(s)

)
dF n(q)

=

∫ wF

qr

(
vqF n−1(q)− v

∫ q

qr

F n−1(s)ds

)
dF n(q)

= v

∫ wF

qr

[
qF n−1(q)(F n)′(q)− F n−1(q)(1− F n(q)

]
dq

= v

∫ wF

qr

F n−1(q)

(
q − 1− F n(q)

(F n)′(q)

)
dF n(q)

where the second equation is from (11), the third from integration by parts, and the

fourth from changing the order of integration. Substituting the above expression into the

seeker’s expected profit, we can rewrite it as in (12).

Proof of Lemma 11. If λ = 0, the expected profit is LF (v, qr) = (1− v)(1− F n(qr))

with qr ≥ qt, which is decreasing in qr. Therefore, if (v, r) is optimal, it must ensure

qr = qt. This means that r = t whatever the optimal v is.

Proof of Proposition 4. We prove in three steps.

Step I. We prove part i). Specifically, Lemma 11 implies that ∂ΠF (v, qr)/∂qr < 0

if λ = 0. Because ∂ΠF (v, qr)/∂qr is continuous in λ, there exists λ′ > 0 such that

∂ΠF (v, qr)/∂qr < 0 for λ ∈ [0, λ′]. Then, for these λ values, the optimal qr is at the lower

bound qt, which implies the optimal r equals t. Hence, Proposition 1 implies that VF (λ)

is monotone non-decreasing in λ if λ ≤ λ′.

Step II. The optimal qr is bounded away from wF as λ → +∞. Suppose not. That

is, suppose that qr → wF as λ→ +∞. Then,

lim
λ→+∞

∫ wF
qr

[
λF n−1(q)

(
q − 1− F n(q)

(F n)′(q)

)]
dF n(q)

1− F n(qr)

≥ lim
λ→+∞

λF n−1(qr)

(
qr −

1− F n(qr)

(F n)′(qr)

)∫ wF
qr

dF n(q)

1− F n(qr)

= lim
λ→+∞

λF n−1(qr)

(
qr −

1− F n(qr)

(F n)′(qr)

)
= +∞
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where the inequality follows from Assumption 4 and the last equality follows from the

assumption that qr → wF as λ→ +∞ and limq→wF

(
q − 1−Fn(q)

(Fn)′(q)

)
> 0 from Assumption

4.

Recall that the seeker chooses (v, qr) and their marginal profits are

∂ΠF (v, qr)

∂v
=

∫ wF

qr

[
λF n−1(q)

(
q − 1− F n(q)

(F n)′(q)

)
− 1

]
dF n(q) (A.29)

∂ΠF (v, qr)

∂qr
= −

{
1 + λ

[
vF n−1(qr)

(
qr −

1− F n(qr)

(F n)′(qr)

)
− t
]
− v
}

(F n)′(qr)(A.30)

Then, if λ is large enough, (A.29) implies that ∂ΠF (v, qr)/∂v > 0 for any v, so v = v̄.

Recall that Assumption 4 implies that limq→wF

(
q − 1−Fn(q)

(Fn)′(q)

)
> 0 and denote the limit

as z > 0. Then, if λ is large enough, (A.30) implies that ∂ΠF (v, qr)/∂qr for large enough

qr has the same sign as

−λ
[
v̄ lim
qr→wF

F n−1(qr)

(
qr −

1− F n(qr)

(F n)′(qr)

)
− t
]

= −λ [v̄z − t] < 0

where the equality follows from the large v̄. Thus, qr is bounded away from wF as

λ→ +∞.

Step III. If λ is large enough, the optimal is v̄ and the optimal r is weakly decreasing

in λ. To see this, notice that qr is bounded away from wF , so for large enough λ,

∂ΠF (v, qr)/∂v > 0 for all v. Hence, the optimal prize is v̄. With v = v̄ in (A.30), a higher

λ shifts ∂ΠF (v, qr)/∂qr downwards, which results in a lower qr. Intuitively, because v

cannot be increased further, we need to lower r in order to increase the profits.

Proof of Lemma 12. We know from above that if λ is large enough, the optimal prize

is v̄. With v = v̄, the marginal profit in (A.30) at qr = qt is

∂ΠF (v̄, qt)

∂qr
=

{
v̄ − 1 + λv̄F n−1(qt)

1− F n(qt)

(F n)′(qt)

}
(F n)′(qt) > 0

which means the optimal r > t whenever optimal v = v̄.

Proof of Proposition 5. If λ is small enough, the optimal r = t, so Proposition 2

implies part i).

Notice that Lemma 12 implies that if λ is large enough, the optimal r > t. Therefore,

the optimal qr satisfies the first order condition ∂ΠF (v̄, qr)/∂qr = 0, which is equivalent
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to

F n−1(qr)

(
qr −

1− F n(qr)

(F n)′(qr)

)
=

1

λ
− 1

λv̄
+
t

v̄
(A.31)

The left hand side of the above equation is increasing in qr due to Assumption 4, so the

above equation has a unique solution. Let qF (λ) be the solution. Then, the corresponding

reservation performance is RF (λ) = v̄qF (λ)F n−1(qF (λ)). As λ → +∞, (A.31) becomes

(13), and qF (λ) decreases and converges to qF which is the solution of (13). As a result,

limλ→+∞RF (λ) = v̄qFF
n−1(qF ). Thus, part ii) of the proposition is also true.

E Parametric Distributions

Recall that Lemma 5 shows that F ≺ G implies F ≺FOSD G. We show below that

F ≺FOSD G implies F ≺ G for many distribution families. First, note that for F and G

within the following distribution families, F̂ (q) and Ĝ(q) have closed-form expressions.

• Uniform Distributions Consider F (q) = q/wF and G(q) = q/wG with 0 < wF <

wG. The supports are [0, wF ] for F and [0, wG] for G. Then, φF (q) = q(q/wF )n−1, so

φ−1
F (x) = (wF )

n−1
n x

1
n and F̂ (x) = (x/wF )1/n. Similarly, Ĝ(x) = (x/wG)1/n. Then,

it is straightforward to verify F ≺ G.

• Power Function Distributions Consider F (q) = qα and G(q) = qα
′

with q ∈
[0, 1] and 0 < α < α′. Then, φF (q) = q(n−1)α+1, so φ−1

F (x) = x
1

(n−1)α+1 and F̂ (x) =

x
α

(n−1)α+1 . Similarly, Ĝ(x) = x
α′

(n−1)α′+1 . Thus, F ≺ G.

For F and G within the following distribution families, F̂ (q) and Ĝ(q) do not have

closed-form expressions, so we verify F ≺ G numerically.

• Pareto Distributions Consider the c.d.f. F (q;α) = 1− (1 + q)α for q ∈ [0,+∞)

with parameter α < −1. We focus on α < −1 to ensure that the mean − 1
1+α

is finite. Then, F (·;α′) ≺FOSD F (·;α′′) if and only if α′ ≤ α′′. Notice that the

density of effective ideas also depends on parameters α, so we write it as f̂(x;α). A

sufficient condition for F (·;α′) ≺ F (·;α′′) is ∂2logf̂(x;α)
∂x∂α

> 0 for all α ∈ (α′, α′′) and for

all x > 0. We verify this condition for −100 ≤ α ≤ −1.05 and 2 ≤ n ≤ 100. Thus,

for those α and n values, the first order stochastic dominance and the stochastic

order in Definition 2 are equivalent.

• Exponential Distributions Consider the c.d.f. F (q;α) = 1−eαq for q ∈ [0,+∞)

and parameter α < 0. As above, F (·;α′) ≺FOSD F (·;α′′) if and only if α′ ≤ α′′.
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We can verify the sufficient condition that ∂2logf̂(x;α)
∂x∂α

> 0 for 0.1 ≤ α ≤ 20 and

2 ≤ n ≤ 100. Thus, for those α and n values, the first order stochastic dominance

and the stochastic order in Definition 2 are equivalent.

• Log-normal Distributions Let F (q;µ, σ2) for q ≥ 0 be the c.d.f. of log-normal

distribution with mean µ > 0 and variance σ2 > 0. For any fixed σ2, we have

F (·;µ′, σ2) ≺FOSD F (·;µ′′, σ2) if and only if µ′ ≤ µ′′. As above, we can verify the

sufficient condition that ∂2logf̂(x;µ,σ2)
∂x∂µ

> 0 for 0.1 ≤ µ ≤ 20 and 2 ≤ n ≤ 100. Thus,

for those µ and n values, the first order stochastic dominance and the stochastic

order in Definition 2 are equivalent.

46


	Introduction
	Related Literature
	Model
	Optimal Prize
	Scarcity of Ideas
	Stochastic Dominance Notion of Idea Scarcity
	Comparative Static Analysis

	Proof of Proposition 2
	Extensions
	Nonlinear Benefits 
	Endogenous Reservation Performance 

	Conclusion
	Omitted Proofs in Sections 4-6
	Proof of the Properties stated in Footnote 15
	Omitted Proofs in Section 7.1
	Omitted Proofs in Section 7.2
	Parametric Distributions

